Закрытое Акционерное Общество

«ИВЭНЕРГОСЕРВИС»

153002, г. Иваново, ул.Шестернина, д. 3, Тел/факс: (4932) 37-22-02 ИНН 3731028511, КПП 370201001, ОГРН 1033700079951 ОКПО 44753410, ОКОНХ 71100

e-mail: office@ivenser.com

СХЕМА ТЕПЛОСНАБЖЕНИЯ ГО «ГОРОД КИРОВО-ЧЕПЕЦК»

Обосновывающие материалы к схеме теплоснабжения:

Глава 6. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии

Книга 6. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии

«У	ТВЕРЖДАІ	O»
Техничес	кий директ	op –
Главный инженер О	AO «Кирово	ская
теплоснабжаю	щая компан	«RNI
	_ А. В. Бару	′лин
« »	20	Г.

СХЕМА ТЕПЛОСНАБЖЕНИЯ МО «ГОРОД КИРОВО-ЧЕПЕЦК»

Обосновывающие материалы к схеме теплоснабжения:

Глава 6. «Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии»

Книга 6. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии

	ЗАО «Ивэнергосервис»
	Генеральный директор
	Е.В. Барочкин
«»	20 г.

Оглавление

Раздел 1. Общие положения	5
Раздел 2. Предложения по реконструкции и техническому перевооружению источников, работающих в режиме комбинированной выработки электрической и тепловой энергии	6
2.1. Предложения по реконструкции оборудования и техническому перевооружению Кировской ТЭЦ-3 и котельной микрорайона Каринторф	6
2.2. Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления в зоне действия ТЭЦ-3	21
2.3. Обоснование предлагаемых для реконструкции котельных для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок	22
2.4. Обоснование предлагаемых для реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии	22
2.5. Обоснование предлагаемых для перевода в пиковый режим работы котельных по отношению к источникам тепловой энергии с комбинированной выработкой тепловой и электрической энергии	22
2.6. Обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии	23
2.7. Обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями	23
2.8. Обоснование организации теплоснабжения в производственных зонах	24
2.9. Обоснование перспективных балансов тепловой мощности источников тепловой энергии и теплоносителя и присоединенной тепловой нагрузки в каждой из систем теплоснабжения г. Кирово-Чепецк и ежегодное распределение объемов тепловой нагрузки между источниками тепловой энергии	25
2.10. Расчет радиусов эффективного теплоснабжения зоны действия ТЭЦ-3, позволяющий определить условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе	25
2.11. Предложения по строительству новых источников теплоснабжения	
2.12. Предложения по реконструкции и техническому перевооружению котельных	
Раздел 3. Предложения по покрытию перспективной тепловой нагрузки, не обеспеченной тепловой мощностью	
3.1. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 1	
3.2. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 2	29
3.3. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 3	32
3.4. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 4	35
3.5. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 5	37
3.6. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 7	
3.7. Выводы по разделу 4	
Раздел 4. Расчет максимальной выработки электрической энергии на базе прироста теплово потребления	
Раздел 5. Определение перспективных режимов загрузки Кировской ТЭЦ-3 по присоединенн тепловой нагрузке	

 5.1. Сведения об изменениях состава установленного оборудования Кировской ТЭЦ-3, учитываемых при разработке перспективных топливных балансов 	47
5.2. Определение перспективных режимов загрузки оборудования Кировской ТЭЦ-3 по присоединенной тепловой нагрузке	48
Раздел 6. Определение потребности в топливе и рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово-Чепецк	62
6.1. Определение потребности в топливе для Кировской ТЭЦ-3	62
6.2. Рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово- Чепецк для Кировской ТЭЦ-3	72
6.3. Рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово- Чепецк для котельной микрорайона Каринторф	
Заключение	76
Список использованных источников	77

Раздел 1. Общие положения

Основой для разработки в Книге 6 предложений по строительству, реконструкции и техническому перевооружению источников тепловой энергии МО «город Кирово-Чепецк» до 2033 года является Федеральный закон РФ от 27 июля 2010 г. № 190-ФЗ "О теплоснабжении" (Статья 23. Организация развития систем теплоснабжения поселений, городских округов), регулирующий всю систему взаимоотношений в теплоснабжении и направленный на обеспечение устойчивого и надёжного снабжения тепловой энергией потребителей, Постановление Правительства Российской Федерации от 22 февраля 2012 г. № 154 "О требованиях к схемам теплоснабжения, порядку их разработки и утверждения" (Собрание законодательства Российской Федерации, 2012, N 10, ст. 1242) и Раздел VI Методических рекомендаций по разработке схем теплоснабжения, утвержденных приказом Минэнерго России и Минрегиона России от 29 декабря 2012 г. N 565/667.

В Книге 6. «Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии» приведены сведения, содержащие:

- 1. Обоснование предлагаемых для реконструкции действующих источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных приростов тепловых нагрузок;
- 2. Предложения по строительству, реконструкции и техническому перевооружению котельных;
- 3. Предложения по покрытию перспективной тепловой нагрузки, не обеспеченной тепловой мощностью;
- 4. Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления;
- 5. Результаты расчета максимальной выработки электрической энергии на базе прироста теплового потребления;
- 6. Определение потребности в топливе и рекомендации по видам используемого топлива;
- 7. Обоснование предлагаемых для реконструкции котельных для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок.

Раздел 2. Предложения по реконструкции и техническому перевооружению источников, работающих в режиме комбинированной выработки электрической и тепловой энергии

2.1. Предложения по реконструкции оборудования и техническому перевооружению Кировской ТЭЦ-3 и котельной микрорайона Каринторф

2.1.1. Общая характеристика оборудования Кировской ТЭЦ-3

Установленная электрическая мощность ТЭЦ –149 МВт.

Установленная тепловая мощность Кировской ТЭЦ-3 – 813 Гкал/ч, из которой тепловая мощность отборов паровых турбин 413 Гкал/ч, мощность пиковых водогрейных котлов 400 Гкал/ч. Тепловая мощность отборов паровых турбин складывается из мощности теплофикационных отборов – 273 Гкал/ч и мощности производственных отборов – 140 Гкал/ч.

Состав и парковый ресурс основного оборудования Кировской ТЭЦ-Зприведен в табл. 2.1.1.

Таблица 2.1.1

Cτ №	Тип (марка) оборудова- ния	Год вво- да	Парко- вый ре- сурс, ч (лет)	Наработка с начала экс- плуатации на 1.11.2013, ч	Продление паркового ресурса, час	Остаточ- ный ре- сурс, час			
	Турбоагрегаты								
3	ПТ-25-90-10/2,5	1953	270 000	447 122	466 356	19234			
4	T-25-90	1954	270 000	340 125	371 678	31553			
5	T-25-90	1956	270 000	400 504	426 265	25761			
6	T-42/50-90-3	1957	270 000	341 464	353 642	12178			
8	ПТ-30-90-10/2,5	1959	270 000	363 372	373 798	47833			
		Кот	лоагрегаты						
5	ТП-170-1	1953	250 000	264 071	307 185	43069			
6	ТП-170-1	1954	250 000	253 146	276 000	22854			
7	ТП-170-1	1954	250 000	316 058	348 870	32919			
8	ТП-170-1	1956	250 000	291 888	302 399	10577			
9	ПК-14/2	1958	250 000	299 163	300 936	46888			
10	ПК-14/2	1959	250 000	289 393	298 173	9122			
11	ПК-14/2	1962	250 000	243 676	250 000	6 433			
		Водог	рейные котл	ТЫ					
1	KB-ΓM-100-150	1980	(16)	18 450	янв. 2017	-			
2	KB-ΓM-100-150	1980	(16)	24 475	янв. 2017	-			
3	КВ-ГМ-100-150	1985	(16)	25 693	дек. 2018	-			
4	КВ-ГМ-100-150	1985	(16)	25 173	дек. 2018	-			

Как следует из данных, представленных в табл. 2.1.1 срок службы паровых котлов и турбин ТЭЦ-3 превышает 50 лет, всё основное оборудование ТЭЦ-3 уже выработало или в ближайшее выработает свой парковый ресурс.

Данные обстоятельства свидетельствуют о высокой степени морального и физического износа оборудования станции.

Также необходимо отметить низкую тепловую нагрузку ТЭЦ. По данным приборов коммерческого учета тепловой энергии с горячей водой и паром, максимальный отпуск тепла с коллекторов ТЭЦ-3 за 2011, 2012, 2013 гг. составлял соответственно 352, 366, 351 Гкал/ч, что более чем в два ниже установленной тепловой мощности станции.

Подробные данные по загрузке оборудования ТЭЦ-3 представлены в Книге 1.

Следствием низкой тепловой нагрузки производственных и теплофикационных отборов станции являются высокие удельные расходы топлива на отпуск электрческой и тепловой энергии сосбенно в неотопительный период (табл. 2.1.2).

Таблица 2.1.2

Nº	Наименование показателя	2011 г.		2012 г.		2013 г.	
п/п		Пропорц. метод	Физич. метод	Пропорц. метод	Физич. метод	Пропорц. метод	Физич. метод
1	Удельный расход топлива на отпуск электрической энергии, г у.т./кВт·ч	393,59	324,177	386,112	306,982	388,338	311,603
1.1	- отопительный период	369	274,1	356,6	249,9	347,0	238,9
1.2	- неотопительный период	459,2	447,7	456,6	448,0	473,3	463,3
2	Удельный расход топлива на отпуск тепловой энергии, кг.у.т./Гкал	145,4	174,328	141,482	175,197	139,529	174,055
2.1	- отопительный период	140,8	173,4	135,6	173,3	134,2	171,7
2.2	- неотопительный период	180,6	184,1	180,5	187,4	180,7	191,2

2.1.2. Общая характеристика оборудования котельной микрорайона Каринторф

Установленная тепловая мощность котельной Каринторф— 7 Гкал/ч. Располагаемая тепловая мощность — 5,5 Гкал/ч.

Основным теплоэнергетическим оборудованием котельной микрорайона Каринторф являются котлы КВаГн "Вулкан" VK-2000 и КВаГн "Вулкан" VK-1500.

Котлоагрегат состоит из котла, блочной горелки и системы автоматики котла. Котлоагрегаты оснащены автоматикой безопасности горения и контрольно-измерительными приборами.

2.1.3. Предложения по выбытию старых, неэффективных, морально и физически изношенных и отработавших свой ресурс мощностей Кировской ТЭЦ-3

В соответствие в планом развития Кировской ТЭЦ-3, предоставленным Кировским филиалом ОАО «ТГК-5», предполагается вывод из эксплуатации и консервация следующего оборудования, направленные на оптимизацию состава работающего оборудования:

1. вывод в консервацию турбоагрегатов:

1.01.2015 г.

- турбоагрегат ПТ-25-90-10/2,5 ст. № 3;
- турбоагрегат Т-25-90 ст. № 4;
- турбоагрегат Т-27-90 ст. № 5;
- 2. вывод из эксплуатации паровых котлов с последующим демонтажом: 1.01.2015 г.
- котлоагрегат ТП-170-1 ст. № 5;
- котлоагрегат ТП-170-1 ст. № 6;
- 3. вывод в консервацию котлоагрегатаТП-170-1 ст. № 7

1.07.2015 г.

- 4. вывод в консервацию (аварийный резерв) котлоагрегатаТП-170-1 ст. № 8 1.09.2014г.
- 5. вывод в консервацию пиковых водогрейных котлов
- КВГМ-100-150 ст. № 1

1.01.2015 г.

- КВГМ-100-150 ст. № 2

1.05.2015 г.

Следствием вывода из работы перечисленного основного оборудования станции станет снижение электрической и тепловой мощности ТЭЦ.

В табл. 2.1.3 приведен тепловой баланс выводимых из эксплуатации паровых турбин и ПВК.

Таблица 2.1.3

Ст. Наименование обо-		Установленная электрическая	Тепловая мощность отборов турбоагрегатов, Гкал/ч		Тепловая мощность			
Nº	рудования	мощность, МВт	П - отбор	Т - отбор	ПВК, Гкал/ч			
	Турбоагрегаты							
3	ПТ-25-90-10/2,5, ЛМЗ	25	70	50	-			
4	Т-25-90, БМЗ	25	-	54	-			
5	Т-27-90, БМЗ	27	-	54	-			
Всего выводимая тепловая мощность по турбоагрегатам		77	70	158	-			
		Пиковые вод	догрейные котлы					
1	КВГМ-100-150	-	-	-	100			
2	КВГМ-100-150	-	-	-	100			
Всего выводимая тепловая мощность по ПВК		-	-	-	200			
Всего выводимая тепловая мощность по турбоагрегатам и ПВК		77	428					

2.1.3. Предложения по выбытию старых, неэффективных, морально и физически изношенных и отработавших свой ресурс мощностей котельной Каринторф

Структура основного оборудования котельной микрорайона Каринторф и год ввода котлов приведены в табл. 2.2.2.

Таблица 2.1.4

	Основное энергетическое оборудование						
Наименование предприятия	Марка котла	Станци- онный номер	Количество котлов, шт.	Тепловая мощность, Гкал/ч	Год ввода		
	КВаГн "Вулкан"VK-1500	Nº 1	1	1,5	2007		
Котельная микрорайона	КВаГн "Вулкан"VK-2000	№ 2	1	2	2007		
Каринторф БМК-8,0	КВаГн "Вулкан"VK-2000	№ 3	1	2	2007		
	КВаГн "Вулкан"VK-1500	Nº 4	1	1,5	2007		

Парковый ресурс по котлоагрегатам котельной микрорайона Каринторф приведен в табл. 2.6.1.

Таблица 2.1.5

Ст	. №	Наименования котлов	Год ввода в эксплуатацию	Нормативный срок службы
	1	КВаГн "Вулкан"VK-2000	2007	16
2	2	КВаГн "Вулкан"VK-1500	2007	16

Сроки ввода в эксплуатацию основного теплофикационного оборудования котельной Каринторф представлены в таблице 2.6.3.

Таблица 2.1.6

Ст. №	Наименования котлов	Год ввода в эксплуатацию	Год капитального ремонта
1	КВаГн "Вулкан"VK-2000	2007	2023
2	КВаГн "Вулкан"VK-2000	2007	2023
3	КВаГн "Вулкан"VK-1500	2007	2023
	КВаГн "Вулкан"VK-1500	2007	2023

Анализ данных таблю 2.1.4 – 2.16 показывает, что предложения по выбытию старых, неэффективных, морально и физически изношенных и отработавших свой ресурс мощностей котельной Каринторф будут рассматриватьься не ранее 2023 г.

При актуализации Схемы теплоснабжения в последующие периоды необходимо будет проанализировать состояние теплоэнергетического оборудованяи котельной и сделать соответствующие выводы.

2.1.4. Предложения по сроку ввода в эксплуатацию новых мощностей на Кировской ТЭЦ-3

В соответствие в планом развития Кировской ТЭЦ-3, предоставленным Кировским филиалом ОАО «ТГК-5», предполагается ввод в эксплуатацию ПГУ-220 в 2014 г. Данное мероприятие направлено на модернизация ТЭЦ и оптимизацию состава работающего оборудования.

На промплощадке Кировской ТЭЦ-3 рядом с существующей ТЭЦ завершается строительство блока ПГУ-220 в моноблочном исполнении на базе газотурбинной установки мощностью 160 МВт, паровой теплофикационной турбины типа Т мощностью 63 МВт и одного двухконтурного котла-утилизатора со всем необходимым тепло- и электротехническим оборудованием.

Строительство проектируемого блока ПГУ предусмотрено как расширение существующей Кировской ТЭЦ-3 с возможностью участия в общем нормированном первичном и, при работе в конденсационном режиме, в автоматическом вторичном регулировании частоты и мощности энергосистемы.

Установленная электрическая мощность Кировской ТЭЦ-3 до реконструкции – 149 МВт, тепловая – 813 Гкал/ч (в том числе 400 Гкал/ч – ПВК), после ввода в эксплуатацию блока ПГУ электрической мощностью 220 МВт и тепловой 136 Гкал/ч суммарная электрическая мощность составит – 369 МВт, а тепловая – 949 Гкал/ч.

Основным и резервным топливом для газовой турбины является природный газ. Аварийное топливо для газовых турбин не предусматривается, так как природный газ подается на ПГУ через новую ГРЭС от двух независимых магистральных газопроводов «Киров-Оханск» и «КС Вятская-Киров».

В состав блока ПГУ входит проверенное и надежное оборудование:

- газовая турбина ГТЭ-160 производства ОАО «Силовые машины» в комплекте с генератором с воздушным охлаждением ТЗФГ-180-2УЗ;
 - котел-утилизатор E-236/41-9,14/1,45-512/298 производства ОАО «ЭМАльянс»;
- паровая турбина Т-63/76-8,8 производства ЗАО «УТЗ» в комплекте с генератором с воздушным охлаждением ТФ-80-2УЗ комплектуется генератором с воздушным охлаждением ТФ-80-2УЗ производства НПО «Элсиб».

Технико-экономические показатели блока ПГУ-220 приведены в табл.2.1.4.

Таблица 2.1.4

№ п/п	Наименование	Размер- ность	Показатели
1	Установленная тепловая мощность	-	-
1.1	- электрическая	МВт	220
1.2	- тепловая	Гкал/ч	136
2	Число часов использования установленной мощности	-	-
2.1	- электрической	ч	7875

№ п/п	Наименование	Размер- ность	Показатели
2.2	- тепловой	Ч	3661
3	Годовая выработка электроэнергии	10 ³ кВт*ч	1732587,9
4	Расход электроэнергии на собственные нужды	10 ³ кВт*ч	57363,4 (3,31 %)
5	Годовой отпуск электроэнергии	10 ³ кВт*ч	1675224,5
6	Годовой отпуск тепловой энергии горячей водой	Гкал	497851,2
7	Удельный расход условного топлива на отпуск электро- энергии	-	-
7.1	- электроэнергии	г.у.т. / кВт*ч	225,4
7.2	- тепловой энергии	кг.у.т / Гкал	158,2
8	Годовой расход условного топлива	-	-
8.1	- условного	тыст.у.т	456,4
8.2	- натурального	млн. м ³	397,4
9	КПД использования тепла топлива	%	60,7

Тепловая схема ПГУ-220 разработана таким образом, чтобы обеспечить любое сочетание электрической и тепловой нагрузок из технического диапазона электрических нагрузок и от максимального значения тепловой нагрузки (теплофикационного режима) до полного ее отсутствия (конденсационного режима). Режим работы ПГУ в энергосистеме (в соответствии с письмом ОАО «ТГК-5» №01-04/1- 377 от 11.05.2011) – базовый, согласно диспетчерского графика нагрузок с возможностью участия в общем нормированном первичном и автоматическом вторичном (при работе в конденсационном режиме) регулировании частоты и мощности энергосистемы. В отопительный период ПГУ работает в теплофикационном режиме и обеспечивает отопительную нагрузку в соответствии с температурным графиком теплосети существующей станции при использовании регулируемых теплофикационных отборов паровой турбины Т-63/76-8,8. Дополнительных отборов пара для нужд существующей станции не предусматривается. Подготовка и восполнение потерь теплосети производится в существующей части ТЭЦ. В неотопительный период ПГУ работает в конденсационном режиме без отборов пара для нужд существующей станции. Обеспечение тепловой нагрузки в горячей воде и паре, а также подпитки теплосети производится от существующего оборудования ТЭЦ. В случае аварийного останова (не более 6-ти часов) оборудования существующей станции ПГУ обеспечивает возможность подачи пара промышленному потребителю от паропровода низкого давления котла-утилизатора и контура высокого давления котлаутилизатора через РОУ блока ПГУ.

2.1.4. Предложения по сроку ввода в эксплуатацию новых мощностей на котельной микрорайона Каринторф

В Схеме теплоснабжения не предусмотрен ввод в эксплуатацию новых мощностей на котельной микрорайона Каринторф.

2.1.5. Предложения по перспективной установленной тепловой мощности Кировской ТЭЦ-3 с учетом аварийного и перспективного резерва тепловой мощности

Изменение состава работающего оборудования ТЭЦ-3, а также установленной тепловой мощности основного теплофикационного оборудования по годам первой пятилетки приведены в табл. 2.1.5.

Таблица 2.1.5

Ст.	Наименование	Наименование	Ед.		Величи	іна показ	ателя по	годам		
Nº	оборудования	показателя	изм	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	
	l		Турбо	рагрегать	ol .					
	DT 05 00	П-отбор	Гкал/ч	70	70					
3	ПТ-25-90	Т-отбор	Гкал/ч	50	50	Б.				
4	T-25-90	Т-отбор	Гкал/ч	54	54	Вывод в консервацию				
5	T-27-90	Т-отбор	Гкал/ч	54	54					
6	T-42-90	Т-отбор	Гкал/ч	65	65	65	65	65	65	
0	DT 20 00	П-отбор	Гкал/ч	70	70	70 70 70 70				
8	ПТ-30-90	Т-отбор	Гкал/ч	50	50	50	50	50	50	
-	ПГУ-220Т	Т-отпуск	Гкал/ч	монтаж	136	136	136	136	136	
		Всего	Гкал/ч	413	549	321	321	321	321	
	Всего по ТА	П-отбор	Гкал/ч	140	140	70 70 70 70				
		Т-отбор	Гкал/ч	273	409	251	251	251	251	
		Пикс	вые вод	догрейнь	іе котлы					
1	КВГМ-100-150	Тепловая мощ- ность	Гкал/ч	100	100	Rı	ывод в ко	нсервани	ю	
2	КВГМ-100-150	Тепловая мощ- ность	Гкал/ч	100	100	Di	ывод в ко	нсерваци	Ю	
3	КВГМ-100-150	Тепловая мощ- ность	Гкал/ч	100	100	100	100	100	100	
4	КВГМ-100-150	Тепловая мощ- ность	Гкал/ч	100	100	100	100	100	100	
	Всего по ПВК	Тепловая мощ- ность	Гкал/ч	400	400	200	200	200	200	
			По	станции	•					
		Паровые турбины	ШТ	5	6	2	2	2	2	
	ичество основно- оборудования	Паровые котлы	ШТ	7	7	4	4	4	4	
	осорудования.	ПВК	ШТ	4	2	2	2	2	2	
Pac	полагаемая теп-	Всего	Гкал/ч	813	949	521	521	521	521	
	овая мощность	сет. вода	Гкал/ч	673	809	451	451	451	451	
	ТЭЦ	пар	Гкал/ч	140	140	70	70	70	70	

Как следует из данных табл. 2.1.6 ввод нового блока ПГУ-220 приведёт в 2014 г. к увеличению располагаемой тепловой мощности ТЭЦ-3 до 949 Гкал/ч, а вывод из эксплуатации устаревшего оборудования в 2015 г. - к снижению тепловой мощности до 521 Гкал/ч. Данного значения располагаемой тепловой мощности ТЭЦ-3 вполне достаточно для покрытия текущей тепловой нагрузки станции (см. рис. 2.1.1).

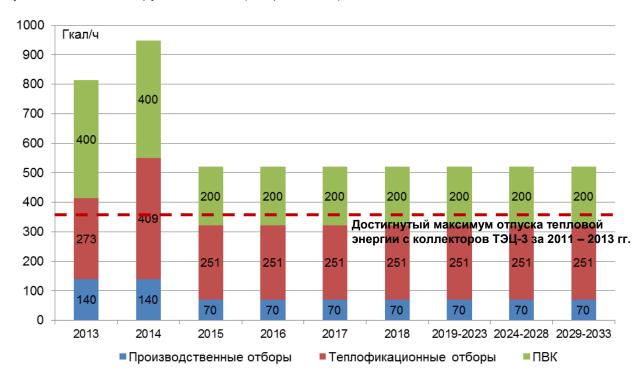


Рис. 2.1.1. Структура располагаемой тепловой мощности ТЭЦ-3 по годам расчётного периода

Составленные балансы установленной, располагаемой, тепловой мощности нетто и перспективной тепловой нагрузки в существующей зоне действия ТЭЦ-3 представлены в табл. 2.1.6.

По результатам составления балансов можно сделать вывод о том, что дефицит установленной тепловой мощности ТЭЦ-3к концу расчётного периода (2033 г.) отсутствует.

Резерв тепловой мощности на конец прогнозируемого периода ТЭЦ-3 составит 80,2 Гкал/ч.

Таблица2.1.6

Nº	Наименование	Значения показателя по годам расчётного периода, Гкал/ч										
п/п	показателя	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019- 2023 гг.	2024- 2028 гг.	2029- 2033 гг.		
1	Установленная тепловая мощность источника	813,0	949,0	521,0	521,0	521,0	521,0	521,0	521,0	521,0		
2	Располагаемая тепловая мощность источника	813,0	949,0	521,0	521,0	521,0	521,0	521,0	521,0	521,0		
3	Расход тепла на соб- ственные нужды ис- точника	7,4	8,5	5,0	5,0	5,0	5,0	5,0	5,0	5,0		

Nº	Наименование	3	Значения показателя по годам расчётного периода, Гкал/ч										
п/п	показателя	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019- 2023 гг.	2024- 2028 гг.	2029- 2033 гг.			
4	Располагаемая тепловая мощность источника нетто, в том числе:	805,6	940,5	516,0	516,0	516,0	516,0	516,0	516,0	516,0			
5	Тепловая нагрузка потребителей	392,9	393,9	394,2	395,1	396,7	397,6	401,5	405,6	409,9			
6	Тепловые потери при передаче тепловой энергии	38,6	38,7	38,4	36,0	35,7	30,7	26,1	25,9	25,9			
7	Резерв/дефицит теп- ловой энергии	+374,0	+507,8	+83,5	+84,8	+83,6	+87,7	+88,4	+84,5	+80,2			

На графике рис. 2.1.2. приведен баланс располагаемойя тепловой мощности ТЭЦ-3 и тепловой нагрузки потребителей, показан резерв тепловой мощности по периоду 2014 – 2033 гг.

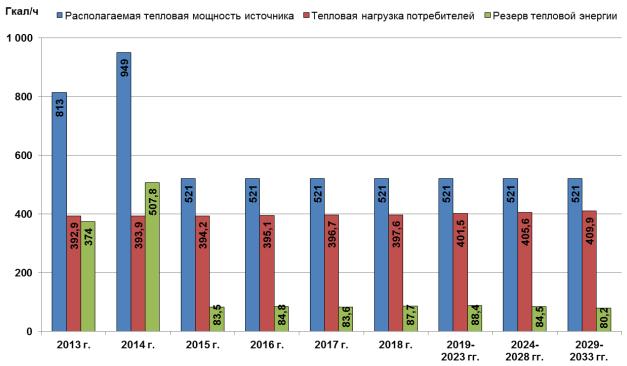


Рис. 2.1.2. Баланс располагаемойя тепловой мощности ТЭЦ-3 и тепловой нагрузки потребителей

2.1.6. Предложения по техническому перевооружению ТЭЦ-3 с целью повышения эффективности работы систем теплоснабжения

На Кировской ТЭЦ-3 на период с 2014 по 2027 год разработаны мероприятия по техническому перевооружению и реконструкции станции (табл. 2.1.7).

Данные мероприятия направлены на модернизацию действующего основного и вспомогательного оборудования станции с целью повышения эффективности, надёжности работы станции и экономии денежных средств за счёт сокращения расхода тепла и электроэнергии на собственных нуждах.

Общая стоимость мероприятий запланированных на 2014 — 2026 гг. составляет 644,79млн. руб. в ценах 2013 г.

При последующей разработке и реализации мероприятий по модернизации оборудования ТЭЦ-3 в период с 2014 по 2033 гг. не учтённых в Книге 6 корректировка схемы теплоснабжения г. Кирово-Чепецк будет производится при актуализации Схемы теплоснабжения.

Таблица 2.1.7

Nº	Наименование	Стои-сть						Год реа	ализаци	и мероп	риятия					
п/п	мероприятия	без НДС, тыс. руб	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
1	Модернизация котла ст. № 10 с заменой водоперепускных труб	1 240	1 240													
2	Техническое перевооружение котла ст. № 9 с заменой коробов дымососов	3 300	3 300													
3	Реконструкция мазутного хозяйства и горелочных устройств и подвода мазута копта № 8 Кировской ТЭЦ-3	3186	3186													
4	Установка регулируемого привода на ПЭН №10 на Кировской ТЭЦ-3	25000	25000													
5	Модернизация котла ПК-14 ст.№11	5 350			5 350											
6	Модернизация оборудования КИП и А ПК-14 ст.№11	12650				12650										
7	Модернизация котла ТП-170 ст. № 8 Модернизация оборудования КИПиА	12560					12560									
8	Модернизация котла ПК-14 ст.№9 Реконструкция системы управления газовыми горелками котла ПК-14 ст.№9 с системой автоматического регулирования	11000						11000								
9	Модернизация котла ПК-14 ст.№ 10	11000							11000							
10	Модернизация КИП и А ГРП	2000								2000						
11	Реконструкция котлоагрегата № 9	50000								50000						
12	Модернизация оборудования КИП и А деаэраторов ПВК	3000									3000					

Nº	Наименование	Стои-сть						Год реа	ализаци	и мероп	риятия					
п/п	мероприятия	без НДС, тыс. руб	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
13	Реконструкция котлоагрегата № 10	50000									50000					
14	Модернизация оборудования КИП и А ПВК КВГМ-100 ст. № 1	5500										5500				
15	Реконструкция котлоагрегата ст. № 11	50000										50000				
16	Модернизация оборудования КИП и А ПВК КВГМ-100 ст. № 2	6000											6000			
17	Модернизация оборудования КИП и А ПВК КВГМ-100 ст. № 3	6600												6600		
18	Реконструкция бойлерной установки	25000												25000		
19	Реконструкция приводов питателей котлов ст. № 9-11	55000													55000	
20	Модернизация оборудования КИП и А ПВК КВГМ-100 ст. № 4	7250													7250	
	Сумма	335746	28186	0	0	12650	12560	11000	11000	52000	53000	55500	6000	31600	62250	0

2.1.7.Обоснование предложений по расширению зоны действия действующего источника тепловой энергии с комбинированной выработкой тепловой и электрической энергии.

Разработанная схема теплоснабжения г. Кирово-Чепецк предполагает подключение к ТЭЦ-3 перспективной тепловой нагрузки в горячей воде потребителей перспективных площадок строительства № 1, 2, 3 (частично), 4, 5, 7(см рис. 2.1.3). На данных площадках планируется многоэтажная жилая и общественно-деловая застройка с подключением к источнику централизованного отопления.

На оставшихся площадках (№ 6, 8 и частично № 3 на рис. 2.1.3) предполагается малоэтажная жилая застройка с индивидуальными источниками теплоснабжения.

В качестве обоснования подключения новых потребителей к ТЭЦ-3 можно назвать следующие причины:

- значительный резерв тепловой мощности ТЭЦ-3, который по состоянию на 2013 г. составляет 374,3 Гкал/ч при расчёте по фактической тепловой нагрузки станции (см. рис. 2.1.2);
- близость перспективных площадок строительства № 1, 2, 3, 4, 5, 7к существующим тепловым сетям ТЭЦ-3 (на рис. 2.1.3 видно, что перечисленные площадки частично или полностью входят в существующую зону действия ТЭЦ), что предполагает сравнительно небольшие капитальные затраты на их подключение к тепловой сети станции.

Рис. 2.1.2. Баланс тепловой мощности ТЭЦ-3 с учётом фактической тепловой нагрузки потребителей в 2013 г.

Общий прирост перспективной тепловой нагрузки с горячей водой источника централизованного теплоснабжения в г. Кирово-Чепецк за счёт нового строительства и сноса аварийного жилья в период с 2014 по 2033 гг. должен составить 8,914 Гкал/ч (см. табл. 2.1.8). При этом нагрузка отопления и вентиляции вырастит на 8,061 Гкал/ч, нагрузка горячего водоснабжения — на 0,853 Гкал/ч. Более подробно данные по приростам тепловой нагрузки приведены в Книге 2.

Таблица 2.1.8

	Наимено- вание ис-	Структура	Прирос	Приросты тепловой нагрузки по годам расчётного периода, Гкал/ч										
№ п/п	точника тепло- снабжения	тепловой нагрузки - отопле-	2014	2015	2016	2017	2018	2019- 2023	2024- 2028	2029- 2033	Всего			
		- отопле- ние и вен- тиляция	0,480	0,117	0,467	0,738	0,445	1,832	1,953	2,029	8,061			
1	ТЭЦ-3	- ГВС (средне- недель- ная)	0,054	0,002	0,042	0,084	0,049	0,202	0,193	0,229	0,853			
		Всего	0,534	0,119	0,510	0,822	0,493	2,034	2,145	2,257	8,914			

Как следует из рис. 2.1.3к 2033 г. ожидается незначительное расширение зоны действия ТЭЦ-3 за счёт подключения к тепловым сетям станции новых потребителей тепловой энергии с горячей водой:

- после застройки площадки № 2 зона действия ТЭЦ-3 вырастет по границе улиц Луначарского и Луговая;
 - после застройки площадки № 7 зона действия сместится влево от ул. Победы.

Суммарная фактическая тепловая нагрузка потребителей, подключённых к ТЭЦ-3, должна вырасти к 2033 г. до 401,2 Гкал/ч.

2.1.8. Оценка финансовых потребностей для мероприятий по подключению тепловой нагрузки малых котельных к тепловым сетям Кировской ТЭЦ-3

Оценка финансовых потребностей для подключения малых котельных к тепловым сетям ТЭЦ-3 не производится поскольку в г. Кирово-Чепецк по состоянию на 2013 г. нет действующих котельных, осуществляющих централизованное теплоснабжение потребителей в зоне действия Кировской ТЭЦ-3

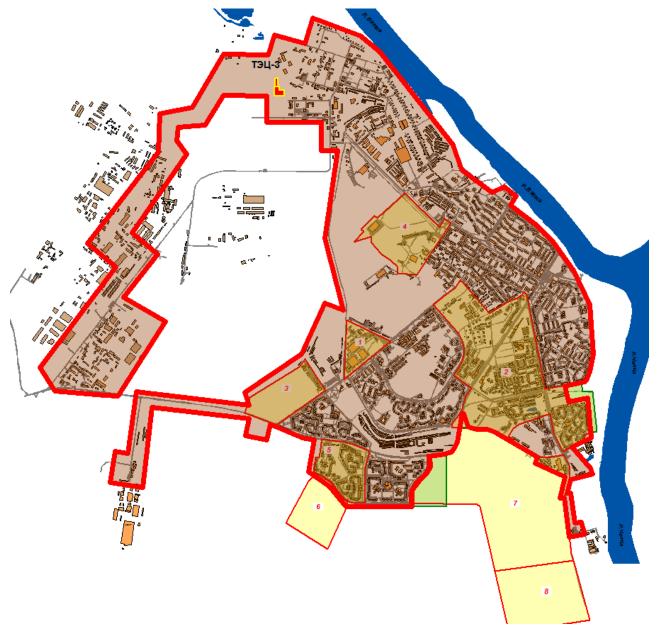


Рис. 2.1.3. Существующая (выделена красным) и перспективная (выделена красным и зелёным) зоны действия ТЭЦ-3 с указанием перспективных площадок строительства (выделены жёлтым)

2.2. Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления в зоне действия ТЭЦ-3

В зоне действия ТЭЦ-3 располагается перспективная площадка строительства, на которой помимо общественной и многоэтажной жилой застройки (будет подключена к тепловым сетям ТЭЦ-3) планируется малоэтажная жилая застройка с индивидуальными источниками теплоснабжения (рис. 2.2.1).

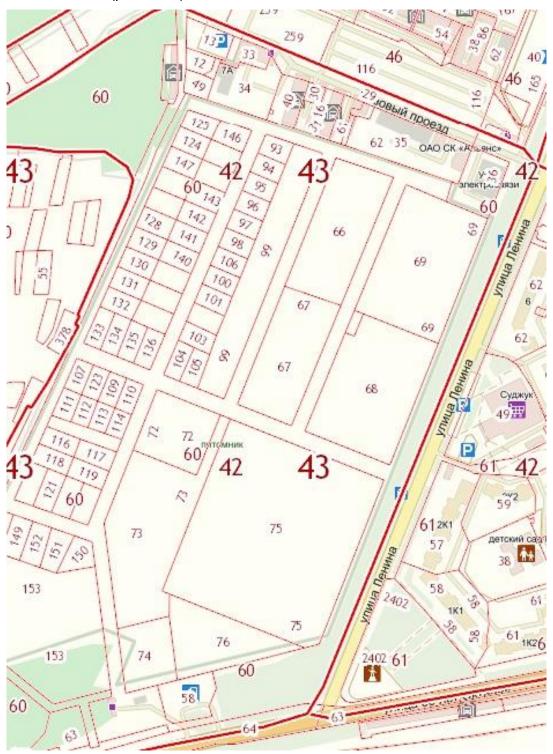


Рис. 2.2.1. Кадастровый квартал 43:42:60, входящий в зону строительства №3

Сводные данные по застраиваемой площадке № 3 приведены в табл. 2.2.1. Более подробно см. Книгу 2.

Номер за- стройки на рис. 2.1.3	Название квартала	Площадь квартала, м²	Прирост площади строительных фон- дов, м ²	Объектыстроительства
3	43:42:60	304 588	12 310	Общественные и жилые много- квартирные здания
3	43.42.00	304 300	6 960	Индивидуальное жилищное строительство

Организация поквартирного отопления в зоне действия ТЭЦ-Зв процессе разработки Схемы теплоснабжения признана нецелесообразной в связи с устойчивой работой ТЭЦ и более эффективным теплоснабжением потребителей тепловой энергиейпри организации централизованного теплоснабжения от ТЭЦ.

2.3. Обоснование предлагаемых для реконструкции котельных для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок

В зоне действия ТЭЦ-3 в процессе разработки Схемы теплоснабжения не выявлено котельных, для которых можно было бы рекомендовать реконструкцию с установкой оборудования для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок.

Для котельной микрорайона Каринторф реконструкции её для выработки электроэнергии в комбинированном цикле невозможна, т.к. установлены водогрейные котлы.

2.4. Обоснование предлагаемых для реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии

В г. Кирово-Чепецк в зоне действия Кировской ТЭЦ-3 нет котельных, которые можно было бы рекомендовать для реконструкции с целью увеличения зоны их действия путем включения в них зон действия существующих источников тепловой энергии.

Котельная микрорайона Каринторф имеет достаточный запас тепловой мощности и не нуждается в реконструкции.

2.5. Обоснование предлагаемых для перевода в пиковый режим работы котельных по отношению к источникам тепловой энергии с комбинированной выработкой тепловой и электрической энергии

В зоне действия Кировской ТЭЦ-3 в г. Кирово-Чепецк нет действующих котельных, которые можно было бы перевести в пиковый режим.

Зона действия Кировской ТЭЦ-3 не распространяется на микрорайон Каринторф.

2.6. Обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии

В г. Кирово-Чепецк отсутствуют котельные, которые можно было бы вывести из эксплуатациис последующей передачей тепловой нагрузки на ТЭЦ-3.

Зона действия Кировской ТЭЦ-3 не распространяется на микрорайон Каринторф.

2.7. Обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями

Схема теплоснабжения г. Кирово-Чепецк предполагает организацию малоэтажной застройки на нескольких площадках в городе: № 3, 6, 8 (см. рис. 2.1.3).

Организации индивидуального теплоснабжения в новых районах малоэтажной застройки является необходимой вследствие существенных капитальных затрат для организации централизованного отопления. Причиной этого являются:

- удаление новых площадок малоэтажной застройки от ТЭЦ-3 (в особенности для площадки № 8);
 - низкая плотность тепловой нагрузки в застраиваемых районах (см. табл. 2.1.7);
 - низкая пропускная способность существующих тепломагистралей (см. Книгу 4);
- необходимость строительства большого количества трубопроводов для подключения каждого дома в районе застройки к тепловым сетям ТЭЦ.

Таблица 2.7.1

Номер										
пло- щадки	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего	
3	-	-	-	0,2533	0,2714	-	-	-	0,5247	
6	-	-	-	-	-	-	-	0,5365	0,5365	
8	0,0905	0,0814	0,0995	0,0905	0,0905	0,7675	0,4215	-	1,6414	

При организации индивидуального теплоснабжения на указанных площадках строительства все перечисленные негативные составляющие отсутствуют.

В книге 5 приведён пример организации индивидуального теплоснабжения с помощью установки индивидуальных водогрейных двухконтурных газовых котлов Protherm Медведь 30 KLOM 10005725 в каждом из строящихся домов.

2.8. Обоснование организации теплоснабжения в производственных зонах

По состоянию на 2013 г. Кировская ТЭЦ-3 осуществляет отпуск тепловой энергии с горячей водой и паром промышленным потребителям по заключенным договорам о теплоснабжении (табл. 2.8.1).

Схема теплоснабжения г. Кирово-Чепецк от Кировскаой ТЭЦ-3 и котельной микрорайона Каринторф на расчётный период 2014 - 2033 гг. не предусматривает организации дополнительного теплоснабжения промышленных площадок.

Таблица 2.8.1

		Тепловая наг	рузка по догов	ору теплоснабж	ения, Гкал/ч
№ п/п	Потребитель	_		Горячая вода	
		Пар	Отопление и вентиляция	ГВС (средне- недельный)	Всего
1	ОАО «КТК» (город)	-	360,5	81,5	442
2	ООО "Завод Полимеров КЧХК"	36,00	71,09	-	71,09
3	ООО "Русплитпром"	7,72	-	-	-
4	МУП "Водоканал"	1,25	-	-	-
5	OAO "ATX"	-	0,652	-	0,652
6	000 "ЗЖБИ"	0,28	-	-	-
7	000 "ЭСО КЧХК"	-	0,1738	-	0,1738
8	ООО "Вуком"	-	0,090	-	0,090
9	ЧП Катаев	-	0,0275	-	0,0275
10	Нижегородская Таможня	-	0,025	-	0,025
11	Козулин К.И.	-	0,0119	-	0,0119
12	Гаражный кооператив А3-9	-	0,010	-	0,010
13	Управление государственного автодорожного надзора	-	0,005	-	0,005
14	ОАО "Кировэнергоспецремонт"	-	0,184	-	0,184
15	ООО "Вятка-Промжелдортранс"	-	0,0994	-	0,0994
	Итого	45,25	432,87	81,5	514,37

2.9. Обоснование перспективных балансов тепловой мощности источников тепловой энергии и теплоносителя и присоединенной тепловой нагрузки в каждой из систем теплоснабжения г. Кирово-Чепецк и ежегодное распределение объемов тепловой нагрузки между источниками тепловой энергии

В г. Кирово-Чепецк существует только одна система централизованного теплоснабжения – от Кировской ТЭЦ-3. Поскольку другие системы централизованного теплоснабжения в городе отсутствуют, то распределение объемов тепловой нагрузки между источниками тепловой энергии производится не может

В разработанной Схеме теплоснабжения города обоснование перспективных балансов тепловой мощности ТЭЦ, теплоносителя и присоединенной тепловой нагрузки выполнено в Книге 4 «Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки».

Сводные данные по перспективным балансам установленной тепловой мощности ТЭЦ-3 приведены в табл. 2.1.6.

2.10. Расчет радиусов эффективного теплоснабжения зоны действия ТЭЦ-3, позволяющий определить условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе

Расчет радиуса эффективного теплоснабжения зоны действия ТЭЦ-3, не выявил условий, при которых подключение теплопотребляющих установок к системам теплоснабжения станции нецелесообразно вследствие увеличения совокупных расходов в указанной системе.

Расчет радиуса эффективного теплоснабжения зоны действия БМК-8,0 в микрорайоне Каринторф, не выявил условий, при которых подключение теплопотребляющих установок к системам теплоснабжения станции нецелесообразно вследствие увеличения совокупных расходов в указанной системе.

2.11. Предложения по строительству новых источников теплоснабжения

Разработанная Схема теплоснабжения г. Кирово-Чепецк не предполагает строительства новых источников теплоснабжения.

2.12. Предложения по реконструкции и техническому перевооружению котельных

По состоянию на 2013 г. в г. Кирово-Чепецк в микрорайоне Каринторф централизованном теплоснабжение потребителей производится от котельной БМК-8,0.

Установленная тепловая мощность котельной Каринторф— 7 Гкал/ч. Располагаемая тепловая мощность — 5,5 Гкал/ч. Основным теплоэнергетическим оборудованием котельной микрорайона Каринторф являются котлы КВаГн "Вулкан"VK-2000 и КВаГн "Вулкан"VK-1500.

Котлоагрегат состоит из котла, блочной горелки и системы автоматики котла. Котлоагрегаты оснащены автоматикой безопасности горения и контрольно-измерительными приборами. Структура основного оборудования котельной микрорайона Каринторф приведена в табл. 2.12.1.

Таблица 2.12.1

	Осно	Основное энергетическое оборудование										
Наименование предприятия	Марка котла	Станци- онный номер	Количество котлов, шт.	Тепловая мощность, Гкал/ч	Год ввода							
	КВаГн "Вулкан"VK-1500	№ 1	1	1,5	2007							
Котельная микрорайона	КВаГн "Вулкан"VK-2000	№ 2	1	2	2007							
Каринторф БМК-8,0	КВаГн "Вулкан"VK-2000	Nº 3	1	2	2007							
	КВаГн "Вулкан"VK-1500	Nº 4	1	1,5	2007							

Описание основного оборудования котельной Каринторф выполнено в табл. 2.12.2. по режимным картам котлов.

Таблица 2.12.2

Наиме- нование котель- ной	Тип, моди- фикация котла	Завод- изготовитель	Топли- во ос- новное	Установ- ленная тепловая мощ- ность котла Гкал/ч	Коэффи- циент по- лезного действия котла, %	Темпера- тура воды на входе / выходе котла, °С	Давление воды на входе в котёл вы- ходе и выходе из котла, кгс/см ²	Pacxод воды через котёл, min/max т/ч
Котель- ная	КВаГн «Вулкан» VK-2000	ЗАО "Бело- горье" г. Ше- бекино, Белгородская область	газ	2,0	89,82	65 / 90*	3,8/3,3	80/85
Карин- торф	КВаГн «Вулкан» VK-1500	ЗАО "Белогорье" г. Шебекино, Белгородская область	газ	1,5	92	70 / 95*	3,8/3,3	60/64

Блочно-модульная котельная БМК-8,0, осуществляющая теплоснабжение потребителей микрорайона Каринторф, введена в эксплуатацию в 2007 г.

Котельная по состоянию на 2014 г. не нуждается в реконструкции или техническом перевооружении.

Раздел 3. Предложения по покрытию перспективной тепловой нагрузки, не обеспеченной тепловой мощностью

3.1. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 1

3.1.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 1

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 1, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.1.1.

Таблица 3.1.1

Номер застрой- ки на схеме	Название квартала	Площадь квартала, м ²	Прирост площади строительных фондов, м ²	Объекты строительства
1	43:42:47	157 577	2300	Общественные здания

Продолжение таблицы 3.1.1

Номер		Прирост площади строительных фондов, м ²									
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.		
1	-	2300	-	-	-	-			2 300		

Схема кадастровых кварталов, входящих в зону строительства № 1, представлена на рис. 3.1.1.

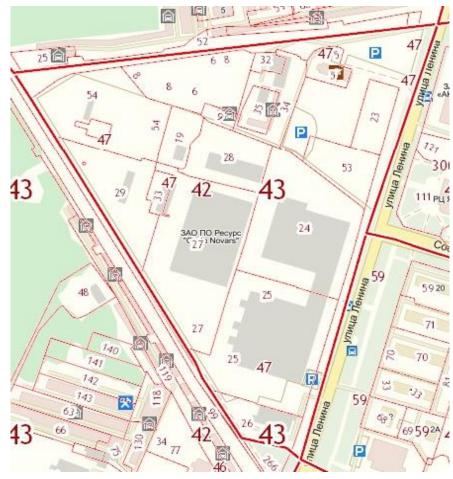


Рис. 3.1.1. Кадастровый квартал 43:42:47, входящий в зону строительства № 1

3.1.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 1 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 1 представлены в табл. 3.1.2.

Таблица 3.1.2

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
1	43:42:47	157 577	2300	Общественные здания

Продолжение таблицы 3.1.2

Номер		Прирост тепловых нагрузок потребителей, Гкал/ч										
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.			
1	-	0,1662	-	-	-	-	-	-	0,1662			

3.1.3. Выбор источника тепловой энергии (мощности) в зоне нового строительства № 1

Для реализации системы теплоснабжения в зоне нового строительства № 1 с общественной застройкой предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2015 г.: от существующей тепловой камеры ТК-7-01а до проектируемой тепловой камеры в зоне нового строительства № 1 длиной 50 п.м. в двухтрубном исполнении условным диаметром 70 мм. Тип прокладки — подземный бесканальный, тип изоляции — ППМ;

Основные технические характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.1.3.

Таблица 3.1.3

Начало	Конец	Условный	Длина	Год	Тип
участка	участка	диаметр (мм)	(м)	прокладки	прокладки
TK-7-01a	Проект. ТК	70	50	2015	Подземная беска- нальная, ППМ

3.2. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 2

3.2.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 2

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 2, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.2.1.

Таблица 3.2.1

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
	43:42:51	170 292	18910	
	43:42:52	324 342	8860	
2	43:42:53	464 435	8960	Общественные и жилые здания
	43:42:63	308 224	37720	11-
	43:42:65	289 665	807	

Продолжение таблицы 3.2.1

Номер застрой- ки на схеме		Прирост площади строительных фондов, м ²										
	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.			
2	7450	-	9100	11167	9050	10780	19230	8480	75257			

Схема кадастровых кварталов, входящих в зону строительства №2, представлена на рис. 3.2.1.

3.2.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 2 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 2 представлены в табл. 3.2.2.

Таблица 3.2.2

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
	43:42:51	170 292	18910	
	43:42:52	324 342	8860	
2	43:42:53	464 435	8960	Общественные и жилые здания
	43:42:63	308 224	37720	2 3/11
	43:42:65	289 665	807	

Номер		Прирост тепловых нагрузок потребителей, Гкал/ч										
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.			
2	0,3981	-	0,5578	0,6118	0,5372	0,6415	0,7719	0,3959	3,9142			

Рис. 3.2.1. Кадастровые кварталы 43:42:51, 43:42:52, 43:42:53, 43:42:63 и 43:42:65, входящие в зону строительства №2

3.2.3. Выбор источника тепловой энергии (мощности) в зоне нового строительства № 2

Для реализации системы теплоснабжения в зоне нового строительства № 2 с общественной и жилой застройкой предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2016 г.: от существующей тепловой камеры Уз. Свердлова 2 до проектируемой тепловой камеры №1 в зоне нового строительства № 2 длиной 50 п.м. в двухтрубном исполнении условным диаметром 100 мм. Тип прокладки – подземный бесканальный, тип изоляции – ППМ;

- на период 2014 г.: от существующей тепловой камеры ТК-16-3 до проектируемой тепловой камеры № 2 в зоне нового строительства № 2 длиной 100 п.м. в двухтрубном исполнении условным диаметром 80 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2018 г.: от существующей тепловой камеры ТК 4-23-3 будет осуществляться подключение объекта теплоснабжения в зоне нового строительства № 2 трубопроводом длиной 40 п.м. в двухтрубном исполнении условным диаметром 50 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2029 г.: от существующей тепловой камеры Уз. России 31-1 будет осуществляться подключение объекта теплоснабжения в зоне нового строительства № 2 трубопроводом длиной 60 п.м. в двухтрубном исполнении условным диаметром 50 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2016 2019 гг.: от существующей тепловой камеры ТК-22-4 до проектируемой тепловой камеры №3 в зоне нового строительства № 2 длиной 130 п.м. в двухтрубном исполнении условным диаметром 100 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2017 гг.: от существующей тепловой камеры Уз. Г/К Б-24 до проектируемой тепловой камеры № 4 в зоне нового строительства № 2 длиной 100 п.м. в двухтрубном исполнении условным диаметром 50 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2024 гг.: от существующей тепловой камеры ТК-22-1-1 до проектируемой тепловой камеры № 5 в зоне нового строительства № 2 длиной 230 п.м. в двухтрубном исполнении условным диаметром 100 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;

Основные технические характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.2.3.

Таблица 3.2.3

Начало участка	Конец участка	Условный диаметр (мм)	Длина (м)	Год прокладки	Тип прокладки
Уз. Свердлова 2	Проект. ТК № 1	100	50	2016	Подземная бес- канальная, ППМ
TK-16-3	Проект. ТК № 2	80	100	2014	Подземная бес- канальная, ППМ
TK 4-23-3	Объект тепло- снабжения	50	40	2018	Подземная бес- канальная, ППМ
Уз. России 31-1	Объект тепло- снабжения	50	60	2029	Подземная бес- канальная, ППМ
TK-22-4	Проект. ТК № 3	100	130	2016 – 2019	Подземная бес- канальная, ППМ
Уз. Г/К Б-24	Проект. ТК № 4	50	100	2017	Подземная бес- канальная, ППМ
TK-22-1-1	Проект. ТК № 5	100	230	2024	Подземная бес- канальная, ППМ

3.3. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 3

3.3.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 3

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 3, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.3.1. Всего предполагается ввести в эксплуатацию 19,27 тыс. м² площади жилой многоквартирной, жилой индивидуальной и общественно-деловой застройки.

Таблица 3.3.1

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
3	43:42:60	304 588	12 310	Общественные и жилые многоквар- тирные здания
			6 960	Индивидуальное жи- лищн. строительство

Продолжение таблицы 3.3.1

Тип за- стройки		Прирост площади строительных фондов, ${\sf м}^2$											
	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.				
Общ. и многокв.	-	-	-	3500	-	-	8810	-	12310				
ижс	-	-	-	3360	3600	-		-	6960				

Схема кадастровых кварталов, входящих в зону строительства №3, представлена на рис. 3.3.1.

3.3.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 3 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 3 представлены в табл. 3.3.2.

Таблица 3.3.2

Тип за- стройки		Прирост тепловой мощности потребителей, Гкал/ч											
	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.				
Общ. и многокв.	-	-	-	0,2529	_	-	0,3322	-	0,5851				
ИЖС	-	-	-	0,2533	0,2714	-	-	-	0,5247				

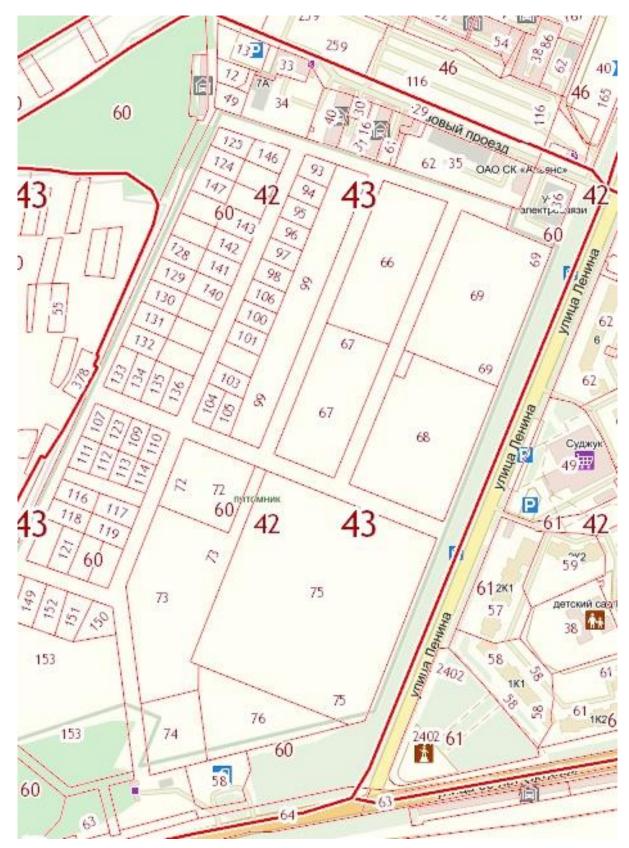


Рис. 3.3.1. Кадастровый квартал 43:42:60, входящий в зону строительства № 3

3.3.3. Выбор источника тепловой энергии (мощности) для перспективной жилой многоквартирной и общественной застройки в зоне нового строительства № 3

Для реализации системы теплоснабжения в зоне нового строительства № 3 для перспективной жилой многоквартирной и общественной застройки предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2017 г.: от существующей тепловой камеры ТК 7-10 до проектируемой тепловой камеры №1 в зоне нового строительства № 3 длиной 300 п.м. в двухтрубном исполнении условным диаметром 80 мм. Тип прокладки – подземный бесканальный, тип изоляции – ППМ:

Основные технические характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.3.3.

Таблица 3.3.3

Начало	Конец Условный		Длина	Год	Тип	
участка	участка диаметр (мм)		(м)	прокладки	прокладки	
TK 7-10	Проект. ТК	80	300	2017	Подземная беска- нальная, ППМ	

3.4. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 4

3.4.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 4

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 4, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.4.1.

Таблица 3.4.1

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства	
4	43:42:300029	456 872	3 100	Общественные здания	

Продолжение таблицы 3.4.1

Номер	Прирост площади строительных фондов, м ²								
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.
4	-	-	-	-	-	-	-	3 100	3 100

Схема кадастровых кварталов, входящих в зону строительства №4, представлена на рис. 3.4.1.

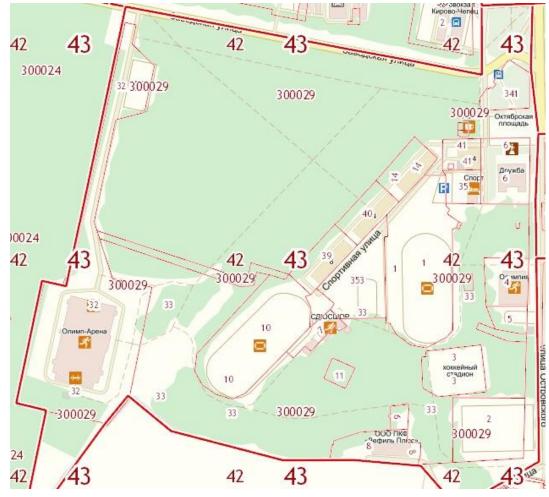


Рис. 3.4.1. Кадастровый квартал 43:42:300029, входящий в зону строительства №4

3.4.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 4 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 4 представлены в табл. 3.4.2.

Таблица 3.4.2

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства	
4	43:42:51	456 872	3 100	Общественные здания	

Продолжение таблицы 3.4.2

Номер	Прирост тепловой мощности потребителей, Гкал/ч									
	застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.
	4								0,1581	0,1581

3.4.3. Выбор источника тепловой энергии (мощности) в зоне нового строительства № 4

Для реализации системы теплоснабжения в зоне нового строительства № 4 с общественной застройкой предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2029 г.: от существующей тепловой камеры ТК 9-20 до проектируемой тепловой камеры в зоне нового строительства № 4 длиной 150 п.м. в двухтрубном исполнении условным диаметром 70 мм. Тип прокладки — подземный бесканальный, тип изоляции — ППМ;

Основные технические характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.4.3.

Таблица 3.4.3

Начало	Конец Условный		Длина	Год	Тип	
участка	участка диаметр (мм)		(м)	прокладки	прокладки	
TK 9-20	Проект. ТК	70	150	2029	Подземная беска- нальная, ППМ	

3.5. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 5

3.5.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 5

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 5, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.2.1.

Таблица 3.5.1

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
5	43:42:69 285 537		21 080	Общественные и жилые здания

Продолжение таблицы 3.5.1

Номер		Прирост площади строительных фондов, м ²							
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.
5	2 510						18 570		21 080

Схема кадастровых кварталов, входящих в зону строительства №5, представлена на рис. 3.5.1.

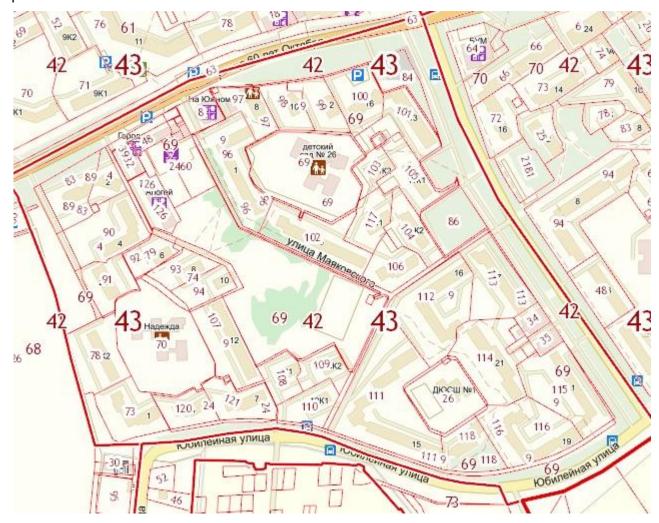


Рис. 3.5.1. Кадастровый квартал 43:42:69, входящий в зону строительства № 5

3.2.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 5 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 5 представлены в табл. 3.5.2.

Таблица 3.5.2

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
5	43:42:69	170 292	21 080	Общественные и жилые здания

Продолжение таблицы 3.5.2

Номер застрой-	Прирост площади строительных фондов, м ²								
ки на	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.
5	0,1814	-	-	-	-	-	0,7956	-	0,977

3.5.3. Выбор источника тепловой энергии (мощности) в зоне нового строительства № 5

Для реализации системы теплоснабжения в зоне нового строительства № 5 с жилой и общественной застройкой предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2014 г.: от существующей тепловой камеры ТК 10-8 до проектируемой тепловой камеры № 1 в зоне нового строительства № 5 длиной 50 п.м. в двухтрубном исполнении условным диаметром 70 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ:
- на период 2024 г.: от существующей тепловой камеры ТК 12-9 до проектируемой тепловой камеры № 2 в зоне нового строительства № 5 длиной 70 п.м. в двухтрубном исполнении условным диаметром 70 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;
- на период 2024 г.: от существующей тепловой камеры ТК 12-7 до проектируемой тепловой камеры № 3 в зоне нового строительства № 5 длиной 50 п.м. в двухтрубном исполнении условным диаметром 100 мм. Тип прокладки подземный бесканальный, тип изоляции ППМ;

Основные технические характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.5.3.

Таблица 3.5.3

Начало участка	Конец участка	Условный диаметр (мм)	Длина (м)	Год прокладки	Тип прокладки
TK 10-8	Проект. ТК №1	70	50 2014		Подземная беска- нальная, ППМ
TK 12-9	Проект. ТК №2	70	70	2024	Подземная беска- нальная, ППМ
TK 12-7	Проект. ТК №3	100	50	2024	Подземная беска- нальная, ППМ

3.6. Подключение прогнозируемых приростов тепловой энергии (мощности) в зоне нового строительства № 7

3.6.1. Прогнозы приростов на каждом этапе площади строительных фондов, с разделением объектов строительства на многоквартирные дома, жилые дома, общественные здания в зоне нового строительства № 7

Прогнозы приростов на каждом этапе площади строительных фондов в зоне нового строительства № 7, сгруппированные по расчетным элементам территориального деления, представлены в табл. 3.6.1.

Таблица 3.6.1

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
7	43:42:300071	1 453 753	91 660	Общественные и жилые здания

Продолжение таблицы 3.6.1

Номер									
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.
7	-	-	-	-	-	35790	9150	46720	91660

Схема кадастровых кварталов, входящих в зону строительства №7, представлена на рис. 3.6.1.

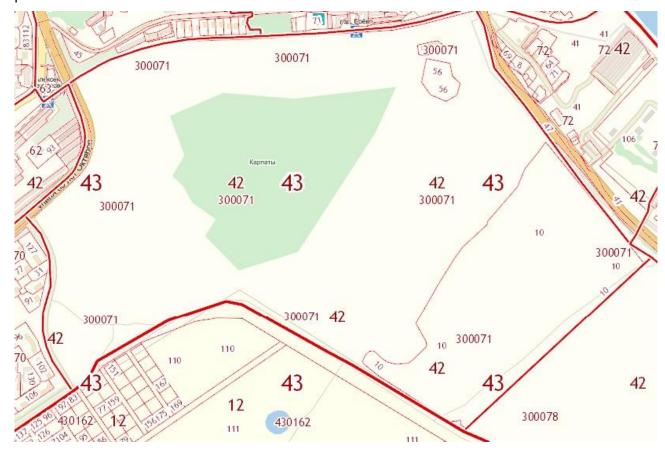


Рис. 3.6.1. Кадастровый квартал 43:42:300071, входящий в зону строительства № 7

3.6.2. Прогнозы приростов объемов потребления тепловой энергии (мощности) и теплоносителя с разделением по видам теплопотребления в зоне нового строительства № 7 и в зоне действия предлагаемых для строительства источников тепловой энергии

Прогнозы приростов на каждом этапе объемов потребления тепловой энергии (мощности) в зоне нового строительства № 7 представлены в табл. 3.6.2.

Таблица 3.6.2

Номер за- стройки на схеме	Название квар- тала	Площадь квар- тала, м ²	Прирост площади строительных фон- дов, м ²	Объекты строительства
7	43:42:300071	1 453 753	91 660	Общественные и жилые здания

Продолжение таблицы 3.6.2

Номер		П	рирост те	пловой мо	ощности г	щности потребителей, Гкал/ч					
застрой- ки на схеме	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 – 2028 гг.	2029 – 2033 гг.	Всего на 2033 г.		
7	-	-	-	-	-	1,6150	0,4667	1,9085	3,9902		

3.6.3. Выбор источника тепловой энергии (мощности) в зоне нового строительства № 7

Для реализации системы теплоснабжения в зоне нового строительства № 7 с много-квартирной жилой и общественной застройкой предлагается использование системы централизованного теплоснабжения от Кировской ТЭЦ-3. Установленная тепловая мощность ТЭЦ-3 составляет 813 Гкал/ч, с 2014 г. установленная мощность увеличивается до 949 Гкал/ч за счет ввода блока ПГУ.

Для осуществления подключения потребителей необходимо провести прокладку следующих трубопроводов:

- на период 2019 г.: от существующей тепловой камеры ТК 5-20А до проектируемой тепловой камеры №1 в зоне нового строительства № 7 длиной 600 п.м. в двухтрубном исполнении условным диаметром 200 мм. Тип прокладки — подземный бесканальный, тип изоляции — ППМ;

Основные технические и стоимостные характеристики тепловых сетей, планируемых к строительству, приведены в табл. 3.6.3.

Таблица 3.6.3

Начало участка			Длина (м)	Год прокладки	Тип прокладки
TK 5-20A	Проект. ТК №1	200	600	2019	Подземная беска- нальная, ППМ

3.7. Выводы по разделу 4

Сводные данные по мероприятиям по подключению перспективных площадок в г. Кирово-Чепецк на период 2014 – 2033 гг. к Кировской ТЭЦ-3 объединены в таблицу 3.7.1.

Таблица 3.7.1.

№ п/п	Наименование площадки	Прирост объемов потребления теп-ловой мощности, Гкал/ч	Тип застройки	Источник теплоснабжения
1	Зона нового строительства № 1	0,1662	Общественно-деловая	ТЭЦ-3
2	Зона нового строительства № 2	3,9142	Жилая многоквартир- ная и общественно- деловая	ТЭЦ-3
3	Зона нового строительства № 3	0,5851	Жилая многоквартир- ная и общественно- деловая	ТЭЦ-3
4	Зона нового строительства № 4	0,1581	Общественно-деловая	ТЭЦ-3
5	Зона нового строительства № 5	0,977	Жилая многоквартир- ная и общественно- деловая	ТЭЦ-3
7	Зона нового строительства № 7	3,9902	Жилая многоквартир- ная и общественно- деловая	ТЭЦ-3
8	ИТОГО	9,791		

В результате реализации мероприятий по подключению перспективных площадок нового строительства в г. Кирово-Чепецке к Кировской ТЭЦ-3 на период 2014 – 2033 гг. прирост объемов потребления тепловой мощности составит 9,791 Гкал/ч.

Раздел 4. Расчет максимальной выработки электрической энергии на базе прироста теплового потребления

Расчет максимальной выработки электроэнергии на базе прироста теплового потребления выполнен с учетом следующих особенностей:

- приросты отпуска тепловой энергии с горячей водой от Кировской ТЭЦ-3 обеспечиваются отпуском тепловой энергии из регулируемых отборов турбоагрегатов и отпуском тепла от ПВК за вычетом прироста количества тепловой энергии, получаемой водой при её нагреве в сетевых и перекачивающих насосах;
- в отличие от расчетов перспективных режимов работы, результаты которых отражены в части 1 Книги 9 «Расчет перспективных технико-экономических показателей работы Кировской ТЭЦ-3 на период 2014 2033 гг.», в данном случае не принимаются во внимание ограничения по допустимым тепловым нагрузкам турбоагрегатов, поскольку задача состоит в определении максимального (располагаемого) прироста выработки электроэнергии по теплофикационному циклу.

Результаты расчета максимальной выработки электроэнергии на базе прироста теплового потребления для Кировской ТЭЦ-3 приведены в табл. 4.1, а также на графиках рис. 4.1 – 4.3.

Необходимо отметить следующее:

- динамика изменения максимальной выработки электроэнергии по теплофикационному циклу на базе отпуска тепла соответствует заданной динамике изменения отпуска тепла от ТЭЦ с паром и горячей водой с учетом ввода ПГУ-220Т в сентябре 2014 года (в этом случае существенно изменяется методика определения объемов выработки электроэнергии по теплофикационному циклу);
- к 2033 году изменение отпуска тепла по ТЭЦ и ввод ПГУ-220Т обуславливает максимальное увеличение годовой выработки электроэнергии по теплофикационному циклу на 802,001 млн. кВт.ч (при максимально значении прироста в 2015 году 900,524 млн. кВт.ч);
- плановая выработка и отпуск электроэнергии по теплофикационному циклу в среднем на 23,8 % меньше, чем максимальные значения выработки и отпуска электроэнергии по теплофикационному циклу, что обусловлено ограничениями на допустимые нагрузки отборов турбоагрегатов, и, следовательно, наличием отпуска тепла от ПВК.

Таблица 4.1

									олица т. г	
	ТЭЦ- 1: Значение показателей в прогнозируемом периоде по годам									
Наименование показателя, единица измерения		2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.	
1. Максимальная выработка электроэнергии по теплофикационному циклу паром регулируемых отборов на базе отпуска тепла с горячей водой и паром, млн. кВт·ч		954,588	1495,615	1490,057	1485,317	1479,860	1381,251	1388,020	1397,093	
2. То же, на базе прироста отпуска тепла с горячей водой и паром относительно базового 2013 года, млн. кВт·ч	0,000	359,496	900,524	894,966	890,226	884,768	786,160	792,929	802,001	
3. Плановая выработка электроэнергии по теплофикационному циклу с учетом ограничений по допустимым нагрузкам регулируемых отборов турбоагрегатов, млн. кВт·ч		710,956	1115,209	1113,926	1112,149	1110,728	1093,948	1095,835	1098,558	
4. То же, % от максимальной выработки электроэнергии по теплофикационному циклу, %	74,0	74,5	74,6	74,8	74,9	75,1	79,2	78,9	78,6	
4. Суммарный максимальный отпуск электроэнергии, выработанной по теплофикационному циклу на базе прироста отпуска тепла с горячей водой и паром, млн. кВт.ч		865,812	1388,642	1383,460	1379,054	1373,898	1278,739	1285,133	1293,701	
6. То же, на базе прироста отпуска тепла с горячей водой и паром относительно базового 2013 года, млн. кВт·ч	0,000	357,154	879,984	874,802	870,397	865,241	770,082	776,475	785,044	
7. Плановый отпуск электроэнергии, выработанной по теплофикационному циклу с учетом ограничений по допустимым нагрузкам регулируемых отборов турбоагрегатов, млн. кВт·ч		644,766	1035,51	1034,518	1033,047	1031,871	1017,169	1018,766	1021,084	
8. То же, % от максимального отпуска электроэнергии, выработанной по теплофикационному циклу, %	74,0	74,5	74,6	74,8	74,9	75,1	79,5	79,3	78,9	

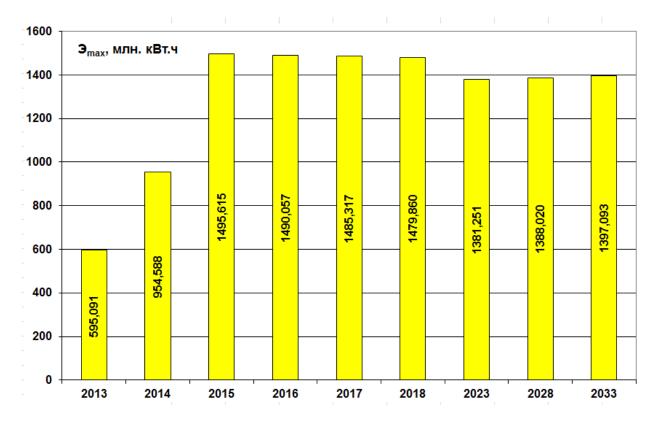


Рис. 4.1. Максимальная выработка электроэнергии по теплофикационному циклу на базе отпуска тепла с горячей водой и паром на 2013 - 2033 гг. по Кировской ТЭЦ-3

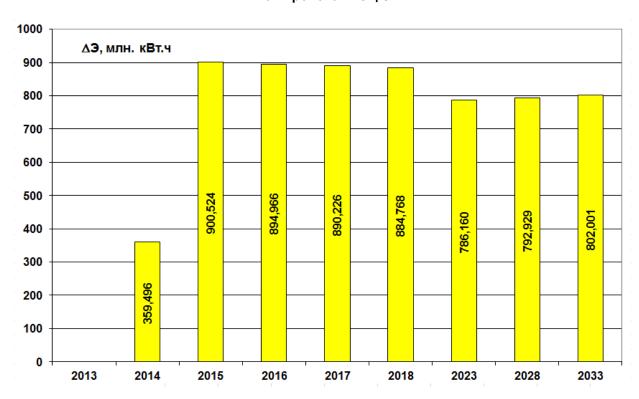


Рис. 4.2. Максимальная выработка электроэнергии <u>на базе приростов</u> суммарного отпуска тепла Кировской ТЭЦ-3 на 2014 - 2033 гг. (относительно базового 2013 года)

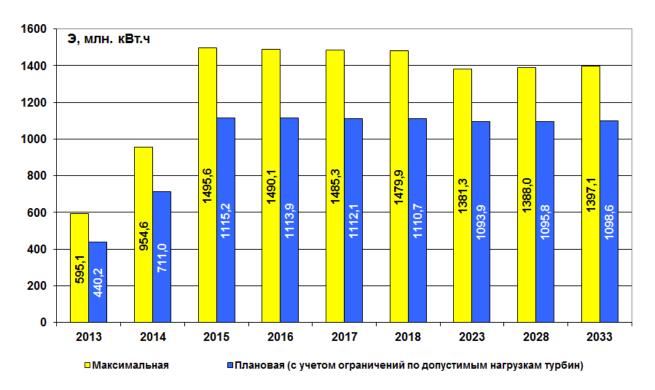


Рис. 4.3. **Сопоставление максимальной и плановой выработки электроэнергии** по теплофикационному циклу Кировской ТЭЦ-3 на 2013 - 2033 гг.

Рис. 4.4. Сопоставление максимального и планового отпуска электроэнергии, выработанной по теплофикационному циклу Кировской ТЭЦ-3 на 2013 - 2033 гг.

Раздел 5. Определение перспективных режимов загрузки Кировской ТЭЦ-3 по присоединенной тепловой нагрузке

5.1. Сведения об изменениях состава установленного оборудования Кировской ТЭЦ-3, учитываемых при разработке перспективных топливных балансов

Изменение состава работающего оборудования ТЭЦ-3, а также установленной тепловой мощности основного теплофикационного оборудования по годам приведены в табл. 5.1.

Как следует из данных табл. 5.1.1. ввод нового блока ПГУ-220 приведёт в 2014 г. к увеличению располагаемой тепловой мощности ТЭЦ-3 до 949 Гкал/ч, а вывод из эксплуатации устаревшего оборудования в 2015 г. – к снижению тепловой мощности до 521 Гкал/ч.

Изменение располагаемой тепловой мощности ТЭЦ, тепловой мощности отборов паровых турбин и турбины ПГУ, а также ПВК по годам периода 2013 – 2033 гг. приведены на графике рис. 5.1.1.

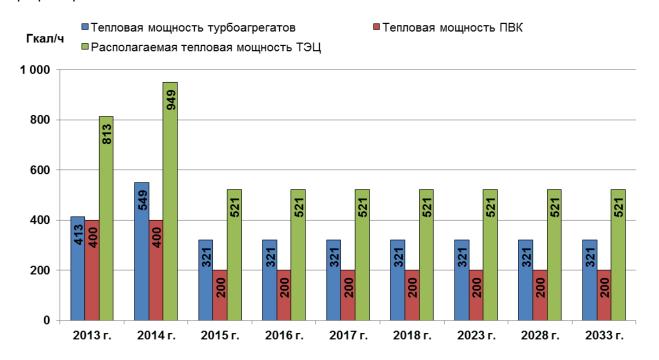


Рис. 5.1.1. Изменение располагаемой тепловой мощности ТЭЦ, тепловой мощности отборов паровых турбин и турбины ПГУ, а также ПВК по годам периода 2013 – 2033 гг.

Таблица 5.1.1

Ст.	Наименование	Наименование		Величина показателя по годам										
Nº	оборудования	показателя	Ед. изм	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.		
			•		Турбоа	грегаты			1		•			
0	ET 05 00	П-отбор	Гкал/ч	70	70							-		
3	ПТ-25-90	Т-отбор	Гкал/ч	50	50			D:						
4	T-25-90	Т-отбор	Гкал/ч	54	54	1		Вывс	д в консерв	ацию				
5	T-27-90	Т-отбор	Гкал/ч	54	54									
6	T-42-90	Т-отбор	Гкал/ч	65	65	65	65	65	65	65	65	65		
0	ПТ-30-90	П-отбор	Гкал/ч	70	70	70	70	70	70	70	70	70		
8	111-30-90	Т-отбор	Гкал/ч	50	50	50	50	50	50	50	50	50		
-	ПГУ-220Т	Т-отбор	Гкал/ч	монтаж	136	136	136	136	136	136	136	136		
		Всего	Гкал/ч	413	549	321	321	321	321	321	321	321		
	Всего по ТА	П-отбор	Гкал/ч	140	140	70	70	70	70	70	70	70		
		Т-отбор	Гкал/ч	273	409	251	251	251	251	251	251	251		
				Пик	овые водо	грейные ко	тлы		•					
1	КВГМ-100-150	Тепловая мощность	Гкал/ч	100	100			Pune	D KOLIOODD	0111410				
2	КВГМ-100-150	Тепловая мощность	Гкал/ч	100	100			DPIRC	д в консерв	ацию				
3	КВГМ-100-150	Тепловая мощность	Гкал/ч	100	100	100	100	100	100	100	100	100		
4	КВГМ-100-150	Тепловая мощность	Гкал/ч	100	100	100	100	100	100	100	100	100		
	Всего по ПВК	Тепловая мощность	Гкал/ч	400	400	200	200	200	200	200	200	200		
					По ст	ганции		_			_			
		Паровые турбины	ШТ	5	6	2	2	2	2	2	2	2		
	ичество основно- борудования	Паровые котлы	ШТ	7	7	4	4	4	4	4	4	4		
	1.31.1-	ПВК	ШТ	4	2	2	2	2	2	2	2	2		
Б.		Всего	Гкал/ч	813	949	521	521	521	521	521	521	521		
	полагаемая тепая мощность ТЭЦ	сетевая вода	Гкал/ч	673	809	451	451	451	451	451	451	451		
		пар	Гкал/ч	140	140	70	70	70	70	70	70	70		

5.2. Определение перспективных режимов загрузки оборудования Кировской ТЭЦ-3 по присоединенной тепловой нагрузке

Показатели перспективных режимов загрузки оборудования Кировской ТЭЦ-3 на период 2014 – 2033 гг. приведены в табл. 5.2.1 и на рис. 5.2.1 –5.2.16. Представленные данные позволяют сделать следующие выводы:

- перспективные режимы работы турбоагрегатов ПТ-30-90 ст. № 3, Т-25-90 ст. № 4 и Т-27-90 ст. № 5 до 2014 года включительно характеризуются некоторым уменьшением тепловых нагрузок регулируемых отборов в соответствии с уменьшением отпуска тепла внешним потребителям; с 2015 года работу указанных турбоагрегатов не планируется в соответствии с рассматриваемым вариантом развития ТЭЦ;
- перспективные режимы работы турбоагрегатов Т-46-90 ст. № 6 и ПТ-30-90 ст. № 8 до 2014 года включительно также характеризуются некоторым уменьшением тепловых нагрузок регулируемых отборов в соответствии с уменьшением отпуска тепла внешним потребителям; с 2015 года после ввода ПГУ, вывода из эксплуатации прочих турбин существующей части ТЭЦ тепловая нагрузка турбоагрегатов Т-46-90 ст. № 6 и ПТ-30-90 ст. № 8 будет увеличена, а в период с 2015 по 2033 годы будет изменяться в соответствии с динамикой отпуска тепла ТЭЦ в целом с горячей водой;
- в среднем по каждому году планируемого периода имеется существенный диапазон регулирования электрической нагрузки турбоагрегатов по электрическому графику нагрузки, однако в зимние месяцы турбоагрегаты Т-46-90 ст. № 6 и ПТ-30-90 ст. № 8 будут работать при максимальных нагрузках теплофикационного отбора, что обуславливает необходимость подключения ПВК;
- среднегодовая электрическая нагрузка газовой турбины составляет около 90 % от номинальной; в зимний период ГТУ будет работать при номинальной электрической нагрузке для обеспечения заданных отпусков тепловой энергии от ПГУ;
- работа турбоагрегата Т-63/76-8,8 ПГУ характеризуется близкой к максимальной тепловой нагрузкой в отопительный период и отсутствует отпуска тепла в неотопительный период; в среднем за каждый год имеется существенный диапазон регулирования электрической нагрузки турбоагрегата по электрическому графику нагрузки;
- перспективные режимы работы энергетических котлов характеризуются постепенным увеличением средней тепловой нагрузки работающих котлов вплоть до 2033 года, что обусловлено оптимизацией распределения нагрузки и выбора состава работающих котлов; котлы ст. № 5-8 будут выводиться из эксплуатации в соответствии с рассматриваемым вариантом развития ТЭЦ;
- среднегодовая теплопроизводительность котла-утилизатора составляет около 90 % номинальной; при этом в зимние месяцы котел будет работать с номинальной нагрузкой;
- тепловая нагрузка ТЭЦ не может быть обеспечена без подключения ПВК в зимние месяцы вплоть до условий 2033 года; при этом требуется работа одного котла в течение относительно коротких промежутков времени.

Таблица 5.2.1

		Значение показателя в прогнозируемом периоде по годам										
Наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.		
	А. Суш	ествующе	е оборуд	ование	l	I		l	I			
1. Отпуск электроэнергии, млн. кВт⋅ч		618,424	535,784	310,468	309,482	308,607	307,758	287,122	288,161	289,759		
2. Выработка электроэнергии, млн. кВт-	1	723,579	631,448	381,398	380,154	379,177	378,217	354,694	355,869	357,655		
3. Выработка электроэнергии	абсолютная, млн. кВт⋅ч	283,411	278,256	124,444	124,483	125,283	125,744	119,001	118,290	117,351		
по конденсационному циклу	относительная, %	39,2	44,1	32,6	32,7	33,0	33,2	33,6	33,2	32,8		
4. Выработка электроэнергии	абсолютная, млн. кВт⋅ч	440,168	353,192	256,954	255,671	253,894	252,473	235,693	237,580	240,304		
по теплофикационному циклу	относительная, %	60,8	55,9	67,4	67,3	67,0	66,8	66,4	2023 r. 2028 r. 288,161 2354,694 355,869 235,693 237,580 266,4 66,8 94,768 94,210 33,0 32,7	67,2		
5. Отпуск электроэнергии, выработан-	абсолютная, млн. кВт⋅ч	242,188	235,077	99,774	99,779	100,375	100,703	94,768	94,210	93,490		
ной по конденсационному циклу	относительная, %	39,2	43,9	32,1	32,2	32,5	32,7	0,703 94,768 94,210	32,3			
6. Отпуск электроэнергии, выработан-	абсолютная, млн. кВт⋅ч	376,236	300,707	210,695	209,703	208,232	207,056	192,354	193,951	196,269		
ной по теплофикационному циклу	относительная, %	60,8	56,1	67,9	67,8	67,5	67,3	67,0	67,3	67,7		
7. Средневзвешенный за год удель-	физический метод	285,1	288,6	247,6	248,0	248,7	249,4	252,5	251,5	250,3		
ный расход условного топлива на выработку электроэнергии, г у.т./кВт·ч	пропорциональный метод	346,4	345,3	310,8	311,1	311,6	312,0	314,5	313,9	313,1		
8. Средневзвешенный за год удель-	физический метод	333,5	340,1	304,1	304,6	305,6	306,4	311,9	310,6	308,9		
ый расход условного топлива на от- уск электроэнергии, г у.т./кВт·ч	пропорциональный метод	405,3	406,9	381,8	382,1	382,8	383,4	388,5	387,7	386,5		
9. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	572,7	545,4	604,2	604,2	603,3	603,0	610,8	611,5	612,3		
пуск электроэнергии по конденсационному циклу, г у.т./кВт·ч	пропорциональный метод	436,4	428,1	385,7	385,8	386,0	386,3	390,2	389,8	389,4		

			Значе	ение пока:	зателя в п	рогнозир	уемом пер	риоде по г	одам	
Наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.
10. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	179,6	179,6	162,0	162,0	162,1	162,2	164,6	164,4	164,4
пуск электроэнергии по теплофикаци- онному циклу, г у.т./кВт·ч	пропорциональный метод	385,2	390,3	380,0	380,4	381,3	382,0	387,7	386,6	385,1
11. Отпуск тепловой энергии от ПВК, ты	с. Гкал	0,000	0,000	20,746	20,397	20,083	19,320	2,520	3,198	4,046
12. Отпуск тепловой энергии внешним п тыс. Гкал	отребителям, всего,	1333,679	1128,397	834,573	830,487	827,002	822,989	750,482	755,460	762,131
<u>– с горячей водой</u>		1067,727	862,445	568,621	564,535	561,050	557,037	484,530	489,508	496,179
– с паром		265,952	265,952	265,952	265,952	265,952	265,952	265,952	265,952	265,952
13. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	177,6	178,0	179,7	179,8	179,9	180,1	181,8	181,6	181,4
пуск тепловой энергии, кг у.т./Гкал	пропорциональный метод	144,4	146,3	150,8	150,9	151,1	151,3	152,5	152,2	151,9
14. Суммарный расход условного топли	ва за год, тыс. т у.т.	443,136	383,122	244,404	243,577	243,108	242,496	226,011	226,731	227,759
15. Расход условного топлива на от-	физический метод	206,262	182,234	94,415	94,265	94,316	94,312	89,547	89,503	89,508
пуск электроэнергии, тыс. т у.т.	пропорциональный метод	250,619	218,010	118,549	118,253	118,141	117,997	111,556	111,716	111,997
16. Расход условного топлива на от-	физический метод	236,874	200,888	149,989	149,312	148,792	148,184	136,463	137,228	138,251
пуск тепловой энергии, тыс. т у.т.	пропорциональный метод	192,517	165,112	125,855	125,324	124,967	124,500	114,455	115,016	115,762
17. Изменение суммарного расхода усл на 2013 год, тыс. т у.т.	овного топлива от состояния	0,000	-60,014	-198,732	-199,559	-200,028	-200,640	-217,125	-216,405	-215,377
18. Изменение расхода условного топлива на отпуск электроэнергии,	физический метод	0,000	-24,028	-111,847	-111,997	-111,946	-111,950	-116,715	-116,759	-116,754
тыс. т у.т.	пропорциональный метод	0,000	-32,609	-132,070	-132,366	-132,478	-132,623	-139,063	-138,903	-138,622
19. Изменение расхода условного топлива на отпуск тепловой энергии,	физический метод	0,000	-35,986	-86,885	-87,562	-88,082	-88,690	-100,411	-99,646	-98,623
тыс. т у.т.	пропорциональный метод	0,000	-27,405	-66,662	-67,193	-67,550	-68,017	-78,062	-77,501	-76,755
	- ТГ ст. № 3 (ПТ-25-90)	7899	4971	0	0	0	0	0	0	0
	- ТГ ст. № 4 (Т-25-90)	4864	3009	0	0	0	0	0	0	0
20. Число часов работы турбоагрегатов, ч	- ТГ ст. № 5 (Т-27-90)	7827	5156	0	0	0	0	0	0	0
	- ТГ ст. № 6 (Т-42-90)	5946	7467	6282	6282	6282	6282	5112	5112	5112
	- ТГ ст. № 8 (ПТ-30-90)	6906	8210	8016	8016	8016	8016	8016	8016	8016

Наименование показателя, единица измерения			Значение показателя в прогнозируемом периоде по годам									
наименование показателя, ед	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.		
	- ТГ ст. № 3 (ПТ-25-90)	30,2	28,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
21. Среднечасовой отпуск тепла из	- ТГ ст. № 4 (Т-25-90)	0,0	-	-	-	-	-	-	-	-		
производственного отбора (противо-	- ТГ ст. № 5 (Т-27-90)	0,0	-	-	-	-	-	-	-	-		
давления), Гкал/ч	- ТГ ст. № 6 (Т-42-90)	0,0	-	-	-	-	-	-	-	-		
	- ТГ ст. № 8 (ПТ-30-90)	29,3	30,5	30,8	30,8	30,8	30,8	30,8	30,8	30,8		
	- ТГ ст. № 3 (ПТ-25-90)	22,4	18,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 4 (Т-25-90)	15,0	6,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
22. Среднечасовой отпуск тепла из теплофикационного отбора, Гкал/ч	- ТГ ст. № 5 (Т-27-90)	22,1	16,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 6 (Т-42-90)	43,0	41,0	48,7	48,4	48,0	47,7	45,0	45,6	46,2		
	- ТГ ст. № 8 (ПТ-30-90)	26,2	23,1	26,6	26,5	26,4	26,2	28,2	28,3	28,7		
	- ТГ ст. № 3 (ПТ-25-90)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 4 (Т-25-90)		0,0	0,0	0,0	0,0	0,0					
23. Среднечасовой отпуск тепла от конденсатора, Гкал/ч	- ТГ ст. № 5 (Т-27-90)	4,1	5,8	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 6 (Т-42-90)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 8 (ПТ-30-90)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- ТГ ст. № 3 (ПТ-25-90)	14,8	13,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
24. Минимально допустимая электри-	- ТГ ст. № 4 (Т-25-90)	8,8	6,6	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
ческая мощность при заданном уровне тепловых нагрузок регулируемых от-	- ТГ ст. № 5 (Т-27-90)	11,0	9,2	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
боров, МВт	- ТГ ст. № 6 (Т-42-90)	27,2	26,3	28,1	28,0	27,9	27,8	27,7	28,0	28,2		
	- ТГ ст. № 8 (ПТ-30-90)	19,7	19,0	21,8	21,7	21,6	21,5	22,6	22,7	22,9		
	- ТГ ст. № 3 (ПТ-25-90)	28,0	28,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
25. Максимально допустимая электри-	- ТГ ст. № 4 (Т-25-90)	28,0	28,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
ческая мощность при заданном уровне тепловых нагрузок регулируемых от-	- ТГ ст. № 5 (Т-27-90)	28,0	28,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
боров, МВт	- ТГ ст. № 6 (Т-42-90)	46,6	47,1	46,6	46,7	46,7	46,8	46,8	46,7	46,6		
	- ТГ ст. № 8 (ПТ-30-90)	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0	30,0		

Наименование показателя, единица измерения		Значение показателя в прогнозируемом периоде по годам										
наименование показателя, е,	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.		
	- ТГ ст. № 3 (ПТ-25-90)	19,3	18,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- TГ ст. № 4 (T-25-90)	16,8	15,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
26. Планируемая электрическая мощ-	- TГ ст. № 5 (T-27-90)	18,6	18,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Thoofs, Wild I	- ТГ ст. № 6 (Т-42-90)	29,2	27,9	30,7	30,5	30,4	30,3	30,3	30,5	30,7		
	- ТГ ст. № 8 (ПТ-30-90)	24,7	23,5	23,6	23,5	23,5	23,4	24,9	25,0	25,0		
	- КА ст. № 5 (ТП-170)	443	322	0	0	0	0	0	0	0		
	- КА ст. № 6 (ТП-170)	0	0	0	0	0	0	0	0	0		
	- КА ст. № 7 (ТП-170)	6659	4480	2880	0	0	0	0	0	0		
27. Число часов работы энергетиче-	- КА ст. № 8 (ТП-170)	6664	4374	0	0	0	0	0	0	0		
Christ No 13102, 1	- КА ст. № 9 (ПК-14)	6135	5769	3356	4500	4500	4500	4500	4500	4500		
	- КА ст. № 10 (ПК-14)	6188	6082	3924	4644	4644	4644	4124	4124	4124		
	- КА ст. № 11 (ПК-14)	6532	6536	6204	6690	6690	6690	5484	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	5484		
	- КА ст. № 5 (ТП-170)	89,6	90,5	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
	- КА ст. № 6 (ТП-170)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
28. Среднечасовая теплопроизводи-	- КА ст. № 7 (ТП-170)	82,0	80,2	74,3	0,0	0,0	0,0	0,0	0,0	0,0		
тельность энергетических котлов,	- КА ст. № 8 (ТП-170)	79,8	78,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
Гкал/ч	- КА ст. № 9 (ПК-14)	94,1	94,9	100,6	102,2	102,3	102,2	107,6	107,7	107,8		
	- КА ст. № 10 (ПК-14)	93,0	96,0	103,9	98,0	97,8	97,7	103,1	103,4	103,9		
	- КА ст. № 11 (ПК-14)	94,8	97,3	99,1	97,7	97,3	97,0	102,7	103,1	103,7		
	- КА ст. № 1 (КВГМ-100)	0	0	0	0	0	0	0	0	0		
30. Число часов работы пиковых водо-	- КА ст. № 2 (КВГМ-100)	0	0	0	0	0	0	0	0	0		
грейных котлов, ч	- КА ст. № 3 (КВГМ-100)	0	0	200	200	200	180	50	60	70		
	- КА ст. № 4 (КВГМ-100)	0	0	200	200	200	200	0	0	0		
	- КА ст. № 1 (КВГМ-100)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
31. Среднечасовая теплопроизводительность пиковых водогрейных кот-	- КА ст. № 2 (КВГМ-100)	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
лов, Гкал/ч	- КА ст. № 3 (КВГМ-100)	0,0	0,0	50,3	48,5	48,5	52,0	,0 0,0 0,0	53,3	57,8		
	- КА ст. № 4 (КВГМ-100)	0,0	0,0	53,5	53,5	51,9	49,8	0,0	0,0	0,0		

	Наименование показателя, единица измерения		Значе	ение пока:	зателя в п	рогнозир	уемом пер	риоде по г	одам	
наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.
	Б. О	борудова	ние ПГУ-2	220T						
1. Отпуск электроэнергии, млн. кВт·ч		0,000	622,484	1675,224	1675,224	1675,224	1675,224	1675,224	1675,224	1675,224
2. Выработка электроэнергии, млн. кВт-ч	1	0,000	644,160	1732,588	1732,588	1732,588	1732,588	1732,588	1732,588	1732,588
3. Выработка электроэнергии	абсолютная, млн. кВт⋅ч	0,000	286,396	874,333	874,333	874,333	874,333	874,333	874,333	874,333
по конденсационному циклу	относительная, %	0,0	44,5	50,5	50,5	50,5	50,5	50,5	50,5	50,5
4. Выработка электроэнергии	абсолютная, млн. кВт∙ч	0,000	357,763	858,255	858,255	858,255	858,255	858,255	858,255	858,255
по теплофикационному циклу	относительная, %	0,0	55,5	49,5	49,5	49,5	49,5	49,5	49,5	49,5
5. Отпуск электроэнергии, выработан-	абсолютная, млн. кВт⋅ч	0,000	278,426	850,409	850,409	850,409	850,409	850,409	850,409	850,409
ной по конденсационному циклу	относительная, %	0,0	44,7	50,8	50,8	50,8	50,8	50,8	50,8	50,8
6. Отпуск электроэнергии, выработан	абсолютная, млн. кВт⋅ч	0,000	344,059	824,815	824,815	824,815	824,815	824,815	824,815	824,815
ной по теплофикационному циклу	относительная, %	0,0	55,3	49,2	49,2	49,2	49,2	49,2	49,2	49,2
7. Средневзвешенный за год удельный расход условного топлива на вы-	физический метод	0,0	213,1	217,9	217,9	217,9	217,9	217,9	217,9	217,9
работку электроэнергии, г у.т./кВт·ч	пропорциональный метод	0,0	220,3	224,4	224,4	224,4	224,4	224,4	224,4	224,4
8. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	0,0	220,5	225,4	225,4	225,4	225,4	225,4	225,4	225,4
пуск электроэнергии, г у.т./кВт·ч	пропорциональный метод	0,0	227,9	232,1	232,1	232,1	232,1	232,1	232,1	232,1
9. Отпуск тепловой энергии внешним по	требителям, всего, тыс. Гкал	0,000	207,409	497,851	497,851	497,851	497,851	497,851	497,851	497,851
<u>– с горячей водой</u>		0,000	207,409	497,851	497,851	497,851	497,851	497,851	497,851	497,851
– с паром		0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
10. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	0,0	158,2	158,2	158,2	158,2	158,2	158,2	158,2	158,2
пуск тепловой энергии, кг у.т./Гкал	пропорциональный метод	0,0	136,0	135,5	135,5	135,5	135,5	135,5	135,5	135,5
11. Суммарный расход условного топли	ва за год, тыс. т у.т.	0,000	170,097	456,289	456,289	456,289	456,289	456,289	456,289	456,289
12. Расход условного топлива на от-	физический метод	0,000	137,274	377,512	377,512	377,512	377,512	377,512	377,512	377,512
пуск электроэнергии, тыс. т у.т.	пропорциональный метод	0,000	141,886	388,815	388,815	388,815	388,815	388,815	388,815	388,815
13. Расход условного топлива на от-	физический метод	0,000	32,822	78,777	78,777	78,777	78,777	78,777	78,777	78,777
пуск тепловой энергии, тыс. т у.т.	пропорциональный метод	0,000	28,211	67,474	67,474	67,474	67,474	67,474	67,474	67,474

	Наименование показателя, единица измерения			Значение показателя в прогнозируемом периоде по годам										
наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.				
14. Изменение суммарного расхода усл на 2013 год, тыс. т у.т.	овного топлива от состояния	0,000	170,097	456,289	456,289	456,289	456,289	456,289	456,289	456,289				
15. Изменение расхода условного топ-	физический метод	0,0	137,274	377,512	377,512	377,512	377,512	377,512	377,512	377,512				
лива на отпуск электроэнергии, тыс. т у.т.	пропорциональный метод	0,0	141,886	388,815	388,815	388,815	388,815	388,815	388,815	388,815				
16. Изменение расхода условного топ-	физический метод	0,0	32,822	78,777	78,777	78,777	78,777	78,777	78,777	78,777				
лива на отпуск тепловой энергии, тыс. т у.т.	пропорциональный метод	0,0	28,211	67,474	67,474	67,474	67,474	67,474	67,474	67,474				
	- ГТУ ГТ-160	0	2928	8040	8040	8040	8040	8040	8040	8040				
17. Число часов работы турбоагрега- тов, ч	- котла-утилизатора E-236/41-9,14/1,45-512/298	0	2928	8040	8040	8040	8040	8040	8040	8040				
	- ПТУ Т-63/76-8,8	0	2928	8040	8040	8040	8040	8040	9 456,289 2 377,512 5 388,815 7 78,777 6 67,474 8040	8040				
18. Среднечасовой отпуск тепла из пр Т-63/76-8,8, Гкал/ч	оизводственного отбора ПТУ	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0				
19. Среднечасовой отпуск тепла из тег Т-63/76-8,8, Гкал/ч	лофикационного отбора ПТУ	0,0	75,0	66,2	66,2	66,2	66,2	66,2	66,2	66,2				
20. Среднечасовой отпуск тепла от ко Гкал/ч	нденсатора ПТУ Т-63/76-8,8,	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0				
21. Минимально допустимая электриче 8,8 при заданном уровне тепловых наг МВт		0,0	32,5	32,1	32,1	32,1	32,1	32,1	32,1	32,1				
24. Максимально допустимая электриче 8,8 при заданном уровне тепловых наг МВт			76,0	76,0										
23. Планируемая электрическая мощ-	- ГТУ ГТ-160	0,0	151,0	147,3	147,3	147,3	147,3	147,3	147,3	147,3				
ность, МВт	- ПТУ Т-63/76-8,8	0,0	69,0	68,2	68,2	68,2	68,2	68,2	,	68,2				
24. Среднечасовая теплопроизводите Гкал/ч	ельность котла-утилизатора,	0,0	242,4	237,7	237,7	237,7	237,7	237,7	237,7	237,7				

Наименование показателя, единица измерения			Значение показателя в прогнозируемом периоде по годам										
наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.			
		В. ТЭЦ	в целом										
1. Отпуск электроэнергии, млн. кВт⋅ч		618,424	1158,268	1985,693	1984,706	1983,831	1982,983	1962,346	1963,386	1964,983			
2. Выработка электроэнергии, млн. кВт-ч	1	723,579	1275,608	2113,986	2112,742	2111,764	2110,805	2087,282	2088,457	2090,243			
3. Выработка электроэнергии	абсолютная, млн. кВт⋅ч	283,411	564,652	998,777	998,816	999,616	1000,077	993,334	992,623	991,684			
по конденсационному циклу	относительная, %	39,2	44,3	47,2	47,3	47,3	47,4	47,6	47,5	47,4			
4. Выработка электроэнергии по теп-	абсолютная, млн. кВт⋅ч	440,168	710,956	1115,209	1113,926	1112,149	1110,728	1093,948	1095,835	1098,558			
лофикационному циклу	относительная, %	60,8	55,7	52,8	52,7	52,7	52,6	52,4	93,334 992,623 9 47,6 47,5 093,948 1095,835 1 52,4 52,5	52,6			
5. Отпуск электроэнергии, выработан-	абсолютная, млн. кВт⋅ч	242,188	513,502	950,183	950,188	950,784	951,112	945,178	944,620	943,899			
ной по конденсационному циклу	относительная, %	39,2	44,3	47,9	47,9	47,9	48,0	48,2	7,282 2088,457 2 3,334 992,623 9 7,6 47,5 8,948 1095,835 1 2,4 52,5 7,178 944,620 9 3,2 48,1 7,169 1018,766 1 1,8 51,9 3,8 223,6 9,7 239,7 8,0 237,9 5,0 254,9	48,0			
6. Отпуск электроэнергии, выработан-	абсолютная, млн. кВт⋅ч	376,236	644,766	1035,510	1034,518	1033,047	1031,871	1017,169	1018,766	1021,084			
ной по теплофикационному циклу	относительная, %	60,8	55,7	52,1	52,1	52,1	52,0	51,8	51,9	52,0			
7. Средневзвешенный за год удель-	физический метод	285,1	250,5	223,2	223,3	223,4	223,5	223,8	223,6	223,4			
ный расход условного топлива на выработку электроэнергии, г у.т./кВт·ч	пропорциональный метод	346,4	282,1	240,0	240,0	240,1	240,1	239,7	239,7	239,6			
8. Средневзвешенный за год удельный расход условного топлива на от-	физический метод	333,5	275,9	237,7	237,7	237,8	237,9	238,0	237,9	237,7			
пуск электроэнергии, г у.т./кВт·ч		405,3	310,7	255,5	255,5	255,5	255,6	255,0	254,9	254,9			
9. Отпуск тепловой энергии от ПВК, тыс	 . Гкал	0,000	0,000	20,746	20,397	20,083	19,320	2,520	3,198	4,046			

Наименование показателя, единица измерения		Значение показателя в прогнозируемом периоде по годам										
наименование показателя, е	диница измерения	2013 г.	2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2023 г.	2028 г.	2033 г.		
10. Отпуск тепловой энергии внешним п тыс. Гкал	отребителям, всего,	1333,679	1335,806	1332,425	1328,338	1324,853	1320,840	1248,334	1253,311	1259,982		
<u>– с горячей водой</u>		1067,727	1069,854	1066,473	1062,386	1058,901	1054,888	982,382	987,359	994,030		
– с паром		265,952	265,952	265,952	265,952	265,952	265,952	265,952	265,952	265,952		
11. Средневзвешенный за год удель-	физический метод	177,6	175,0	171,7	171,7	171,8	171,8	172,4	172,3	172,2		
ный расход условного топлива на от- пуск тепловой энергии, кг у.т./Гкал	пропорциональный метод	144,4	144,7	145,1	145,1	145,3	145,3	145,7	145,6	145,4		
12. Суммарный расход условного топли	ва за год, тыс. т у.т.	443,136	553,219	700,693	699,865	699,397	698,785	2023 r. 2028 r. 1248,334 1253,311 2982,382 987,359 265,952 265,952 172,4 172,3 145,6 682,299 683,020 467,059 467,015 500,370 500,530 215,240 216,005 181,929 182,490 239,163 239,884 260,797 260,753 249,751 249,911	684,047			
13. Расход условного топлива на от-	физический метод	206,262	319,509	471,927	471,776	471,828	471,824	467,059	467,015	467,020		
пуск электроэнергии, тыс. т у.т.	пропорциональный метод	250,619	359,896	507,363	507,068	506,956	506,811	500,370	248,334 1253,311 1 982,382 987,359 9 265,952 265,952 2 172,4 172,3 145,6 682,299 683,020 6 467,059 467,015 4 500,370 500,530 5 215,240 216,005 2 181,929 182,490 2 239,163 239,884 2 260,797 260,753 2 249,751 249,911 2 -21,634 -20,869 -	500,811		
14. Расход условного топлива на от-	физический метод	236,874	233,710	228,766	228,089	227,569	226,961	215,240	216,005	217,027		
пуск тепловой энергии, тыс. т у.т.	пропорциональный метод	192,517	193,323	193,329	192,798	192,441	191,974	181,929	182,490	183,236		
15. Изменение суммарного расхода усло на 2013 год, тыс. т у.т.	вного топлива от состояния	0,000	110,083	257,557	256,729	256,261	255,649	239,163	239,884	240,911		
16. Изменение расхода условного топ-	физический метод	0,000	113,247	265,665	265,514	265,566	265,562	260,797	260,753	260,758		
лива на отпуск электроэнергии, тыс. т у.т.	пропорциональный метод	0,000	109,277	256,744	256,449	256,336	256,192	249,751	249,911	250,192		
17. Изменение расхода условного топ-	физический метод	0,000	-3,164	-8,108	-8,785	-9,305	-9,914	-21,634	-20,869	-19,847		
лива на отпуск тепловой энергии, тыс. т у.т.	пропорциональный метод	0,000	0,806	0,812	0,281	-0,076	-0,543	-10,588	-10,027	-9,281		

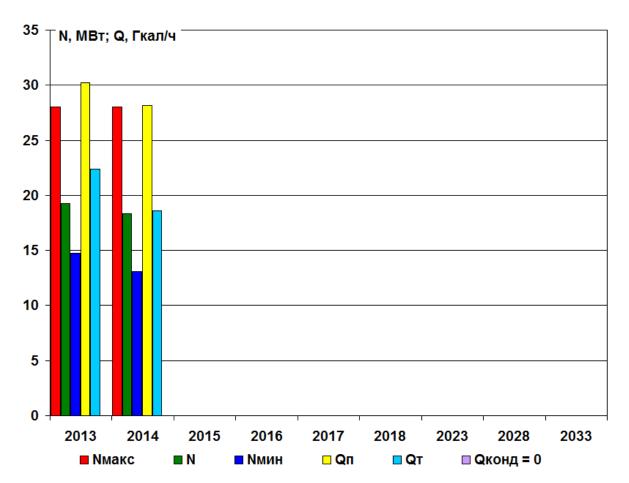


Рис. 5.2.1. Показатели перспективных режимов загрузки турбоагрегата ПТ-25-90 ст. № 3 на 2014 - 2033 годы

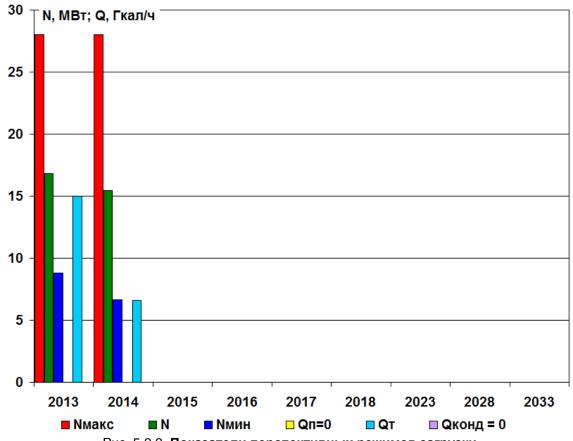


Рис. 5.2.2. Показатели перспективных режимов загрузки турбоагрегата Т-25-90 ст. № 4 на 2014 - 2033 годы

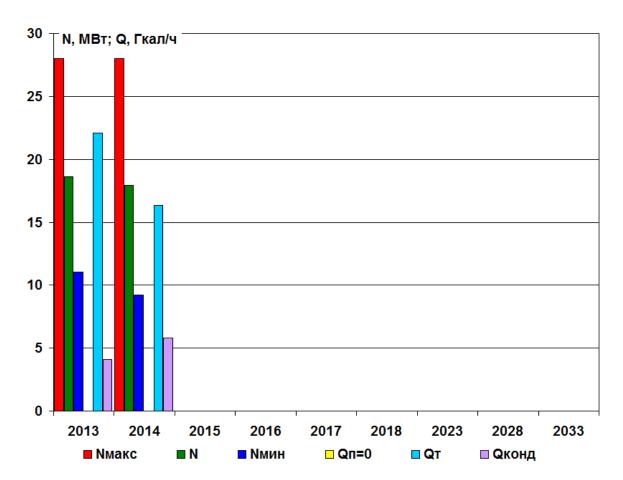


Рис. 5.2.3. Показатели перспективных режимов загрузки турбоагрегата Т-27-90 ст. № 5 на 2014 - 2033 годы

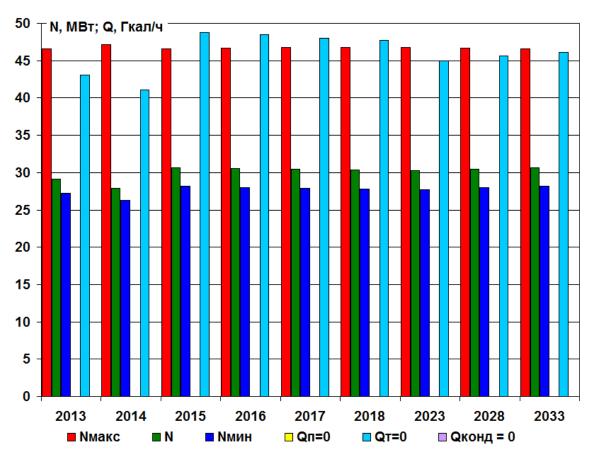


Рис. 5.2.4. Показатели перспективных режимов загрузки турбоагрегата Т-42-90 ст. № 6 на 2014 - 2033 годы

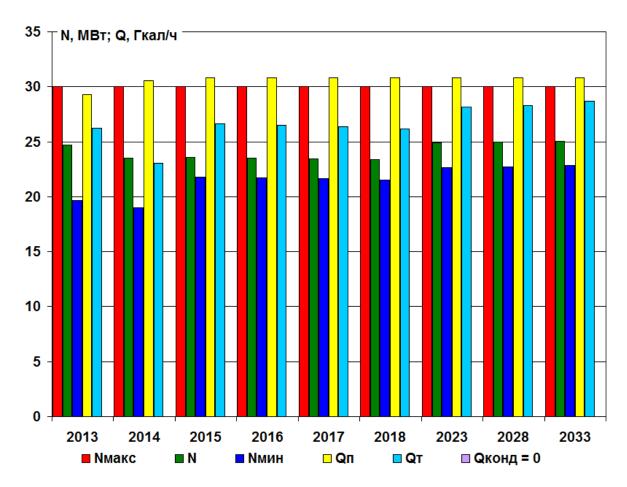


Рис. 5.2.5. Показатели перспективных режимов загрузки турбоагрегата ПТ-30-90 ст. № 8 на 2014 - 2033 годы

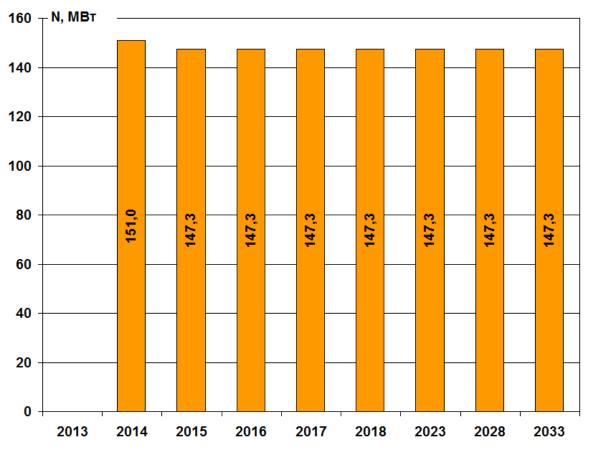


Рис. 5.2.6. Показатели перспективных режимов загрузки газовой турбины ГТЭ-160 ПГУ-220Т на 2014 - 2033 годы

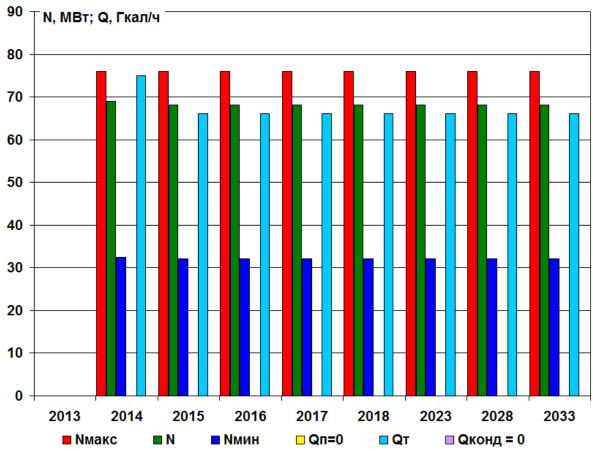


Рис. 5.2.7. Показатели перспективных режимов загрузки паровой турбины T-63/76-8,8 ПГУ-220Т на 2014 - 2033 годы

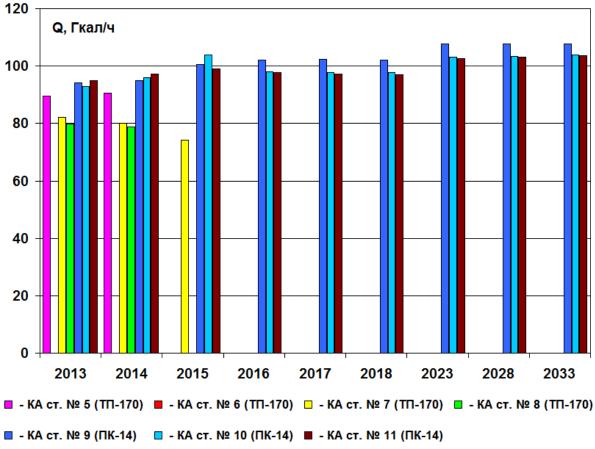


Рис. 5.2.8. Показатели перспективных режимов загрузки котлов на 2014 - 2033 годы (энергетические котлы)

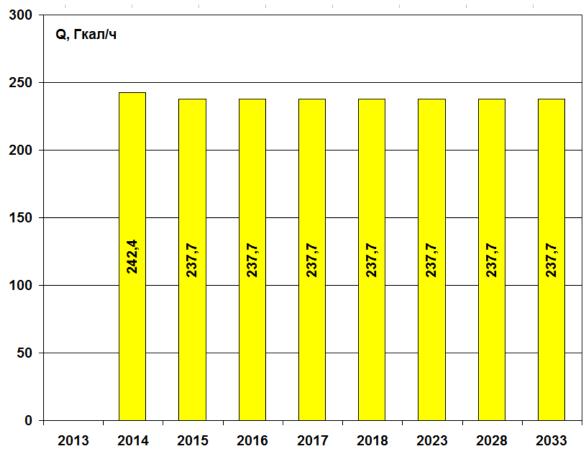


Рис. 5.2.9. Показатели перспективных режимов загрузки котлов на 2014 – 2033 годы (котел-утилизатор ПГУ-220Т)

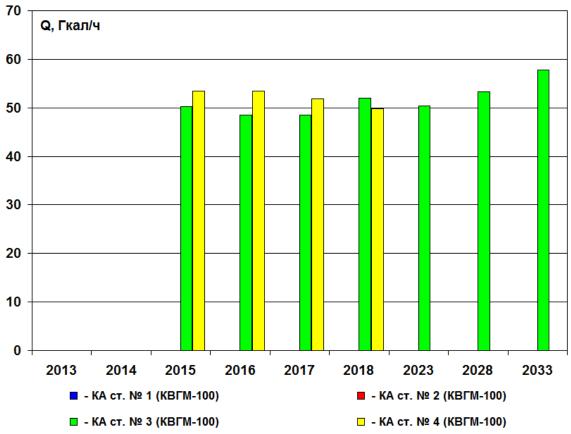


Рис. 5.2.10. Показатели перспективных режимов загрузки пиковых водогрейных котлов на 2014 - 2033 годы

Раздел 6. Определение потребности в топливе и рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово-Чепецк

6.1. Определение потребности в топливе для Кировской ТЭЦ-3

Динамика изменения расхода условного топлива по Кировской ТЭЦ-3 в прогнозируемом периоде от состояния на 2013 год приведена на в табл. 6.1.1 и на рис. 6.1.1,

Динамика изменения полного расхода топлива показана на рис. 6.1.2 – 6.1.4.

Видно, что изменения годового расхода топлива Кировской ТЭЦ-3 в период до 2014 г. в целом соответствуют динамике изменения отпуска тепла внешним потребителям от ТЭЦ. После 2015 года с вводом ПГУ расход топлива существенно увеличивается из-за увеличения отпуска электроэнергии. При этом, как показано выше, удельные расходы топлива на отпуск тепловой и электрической энергии уменьшаются.

Таблица 6.1.1.

Наимено показателя,		Зна		зателя в пр риоде по го		ЮМ
измере		2013 г.	2014 г.	2015 г.	2016 г.	2017 г.
1. Средневзвешенный за год удельный расход условного топлива	физический метод	177,6	175,0	171,7	171,7	171,8
на отпуск тепловой энергии, кг у.т./Гкал	пропорциональный метод	144,4	144,7	145,1	145,1	145,3
2. Суммарный расход у за год, тыс. т у.т.	словного топлива	443,136	553,219	700,693	699,865	699,397
3. Расход условного топлива на отпуск	физический метод	206,262	319,509	471,927	471,776	471,828
электроэнергии, тыс. т у.т.	пропорциональный метод	250,619	359,896	507,363	507,068	506,956
4. Расход условного топлива на отпуск теп-	физический метод	236,874	233,710	228,766	228,089	227,569
ловой энергии, тыс. т у.т.	пропорциональный метод	192,517	193,323	193,329	192,798	192,441
5. Изменение суммарно ного топлива от состоянтыс. т у.т.		0,000	110,083	257,557	256,729	256,261
6. Изменение расхода условного топлива на	физический метод	0,000	113,247	265,665	265,514	265,566
отпуск электроэнергии, тыс. т у.т.	пропорциональный метод	0,000	109,277	256,744	256,449	256,336
7. Изменение расхода условного топлива на	физический метод	0,000	-3,164	-8,108	-8,785	-9,305
отпуск тепловой энергии, тыс. т у.т.	пропорциональный метод	0,000	0,806	0,812	0,281	-0,076

Продолжение табл. 6.1.1

Наименова	ание	в про	Значение г эгнозируемом	оказателя периоде по г	- одам
показателя, единиц	а измерения	2018 г.	2023 г.	2028 г.	2033 г.
1. Средневзвешенный за год удельный расход	физический метод	171,8	172,4	172,3	172,2
условного топлива на от- пуск тепловой энергии, кг у.т./Гкал	пропорциональный метод	145,3	145,7	145,6	145,4
2. Суммарный расход услов год, тыс. т у.т.	зного топлива за	698,785	682,299	683,020	684,047
3. Расход условного топ-	физический метод	471,824	467,059	467,015	467,020
лива на отпуск электро- энергии, тыс. т у.т.	пропорциональный метод	506,811	500,370	500,530	500,811
4. Расход условного топ-	физический метод	226,961	215,240	216,005	217,027
лива на отпуск тепловой энергии, тыс. т у.т.	пропорциональный метод	191,974	181,929	182,490	183,236
5. Изменение суммарного р топлива от состояния на 20		255,649	239,163	239,884	240,911
6. Изменение расхода условного топлива на от-	физический метод	265,562	260,797	260,753	260,758
пуск электроэнергии, тыс. т у.т.	пропорциональный метод	256,192	249,751	249,911	250,192
7. Изменение расхода условного топлива на от-	физический метод	-9,914	-21,634	-20,869	-19,847
пуск тепловой энергии, тыс. т у.т.	пропорциональный метод	-0,543	-10,588	-10,027	-9,281

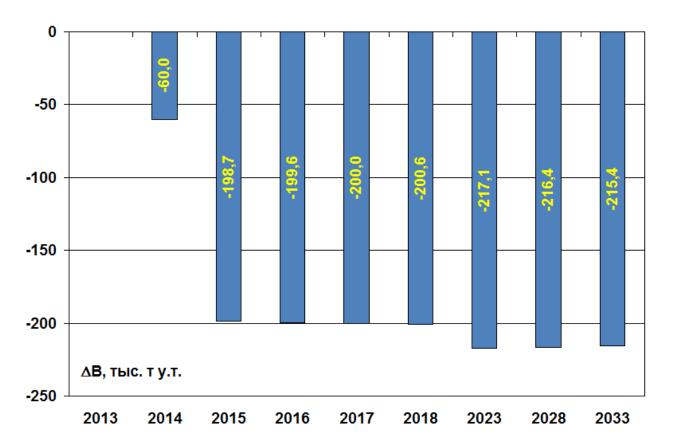


Рис. 6.1.1. Прогноз на 2014 - 2033 годы изменения расхода условного топлива Кировской ТЭЦ-3 от состояния на 2013 год (существующее оборудование)

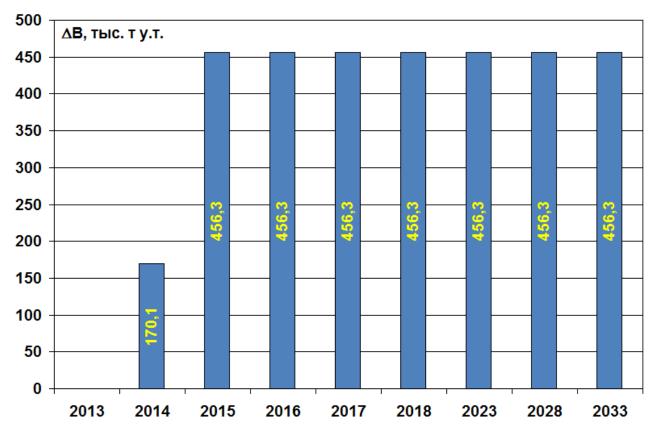


Рис. 6.1.2. Прогноз на 2014 - 2033 годы изменения расхода условного топлива Кировской ТЭЦ-3 от состояния на 2013 год (вновь вводимая ПГУ-220Т)

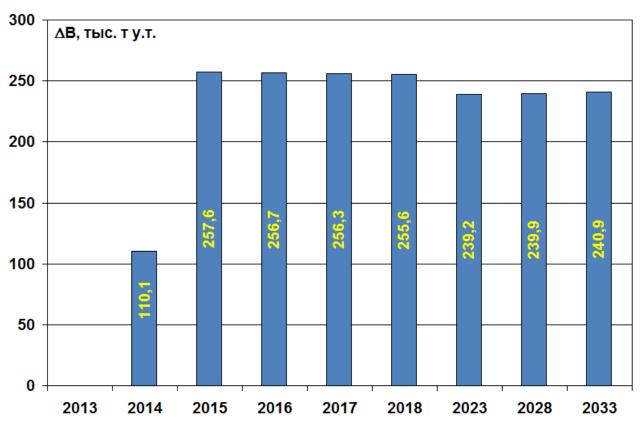


Рис. 6.1.3. Прогноз на 2014 - 2033 годы изменения расхода условного топлива Кировской ТЭЦ-3 от состояния на 2013 год (ТЭЦ в целом)

Перспективный суммарный расход условного топлива по Кировской ТЭЦ-3 для существующего оборудования без ПГУ показан на рис. 6.1.4. Перспективный суммарный расход условного топлива по блоку ПГУ-220 на Кировской ТЭЦ-3 показан на рис. 6.1.5.

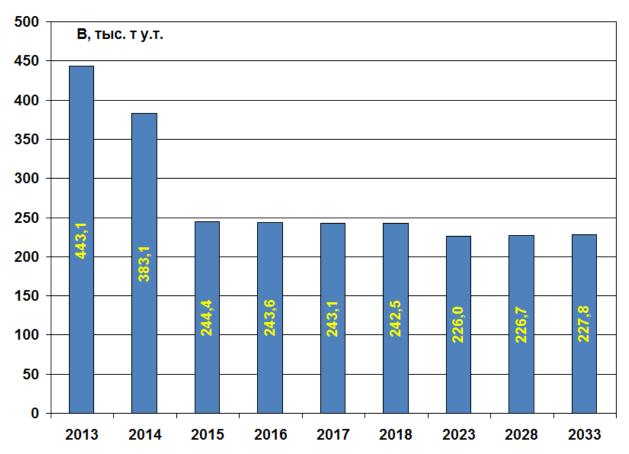


Рис. 6.1.4. Перспективный суммарный расход условного топлива по Кировской ТЭЦ-3 (существующее оборудование)

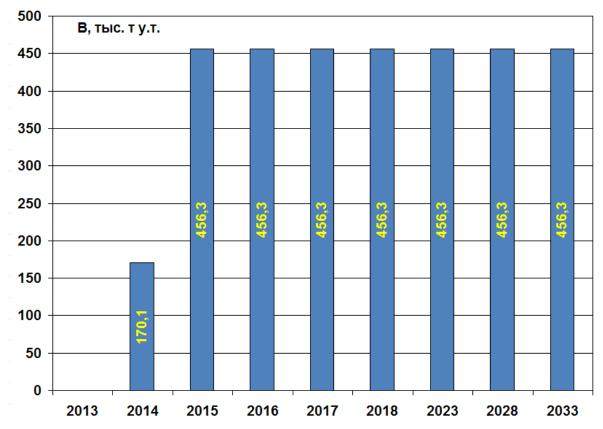


Рис. 6.1.5. Перспективный суммарный расход условного топлива по блоку ПГУ-220 на Кировской ТЭЦ-3

Перспективный суммарный расход условного топлива по Кировской ТЭЦ-3 (ТЭЦ в целом с ПГУ) показан на рисю 6.1.6.

Перспективный суммарный расход условного топлива на отпуск электроэнергии по Кировской ТЭЦ-3 (существующее оборудование) показан на рисю 6.1.7.

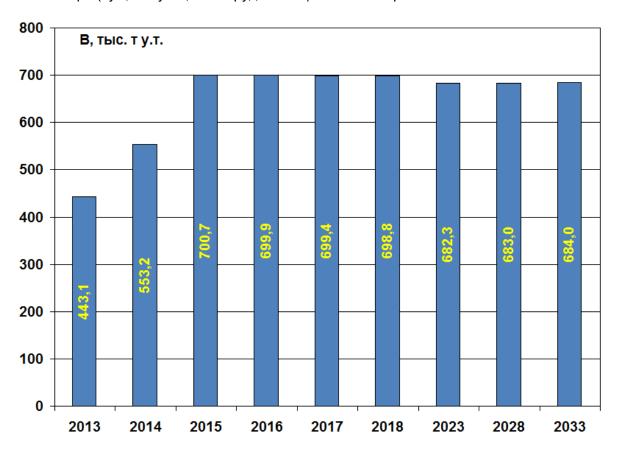


Рис. 6.1.6. Перспективный суммарный расход условного топлива по Кировской ТЭЦ-3 (ТЭЦ в целом с ПГУ)

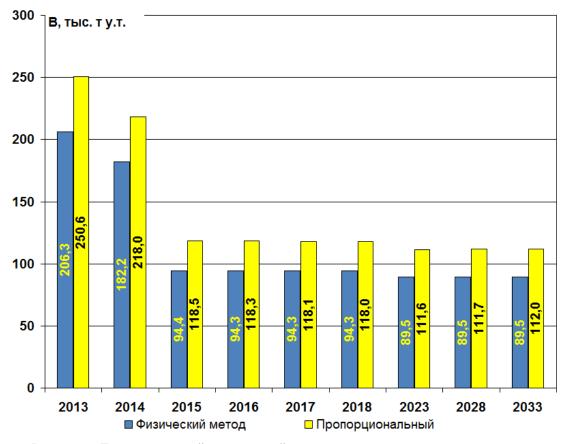


Рис. 6.1.7. Перспективный суммарный расход условного топлива на отпуск электроэнергии по Кировской ТЭЦ-3 (существующее оборудование)

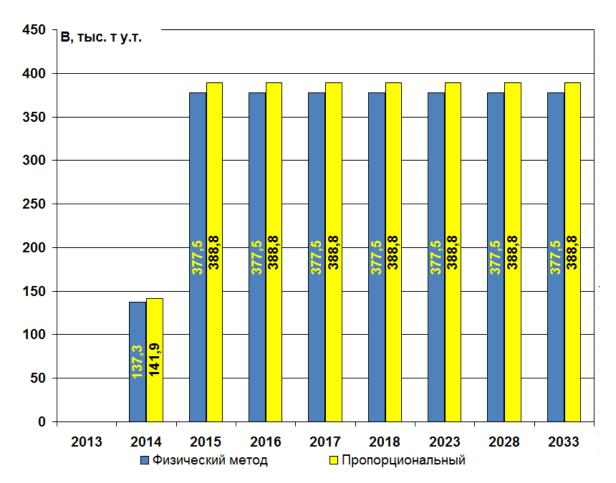


Рис. 6.1.8. Перспективный суммарный расход условного топлива на отпуск электроэнергии по Кировской ТЭЦ-3 (вновь вводимая ПГУ-220Т)

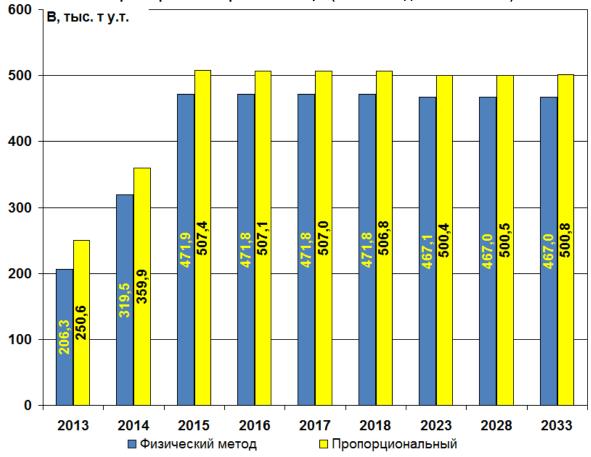


Рис. 6.1.9. Перспективный суммарный расход условного топлива на отпуск электроэнергии по Кировской ТЭЦ-3 (ТЭЦ в целом)

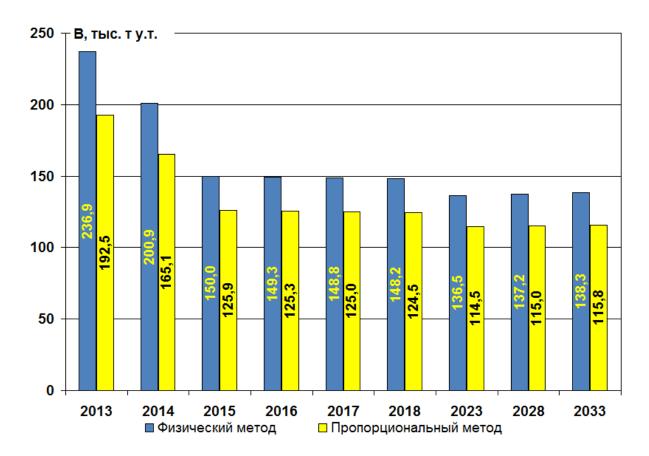


Рис. 6.1.10. Перспективный суммарный расход условного топлива на отпуск тепловой энергии по КировскойТЭЦ-3 (существующее оборудование)

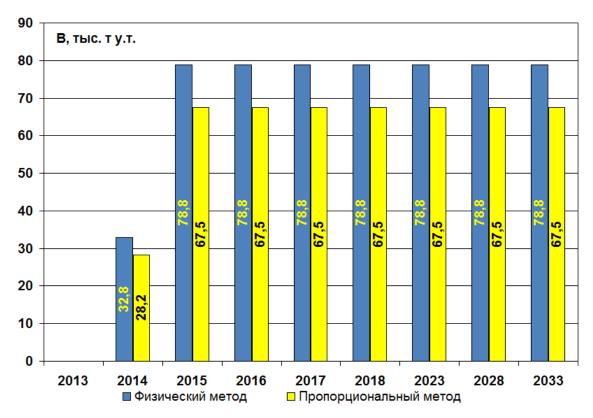


Рис. 6.11. Перспективный суммарный расход условного топлива на отпуск тепловой энергии по Кировской ТЭЦ-3 (вновь вводимая ПГУ-220Т)

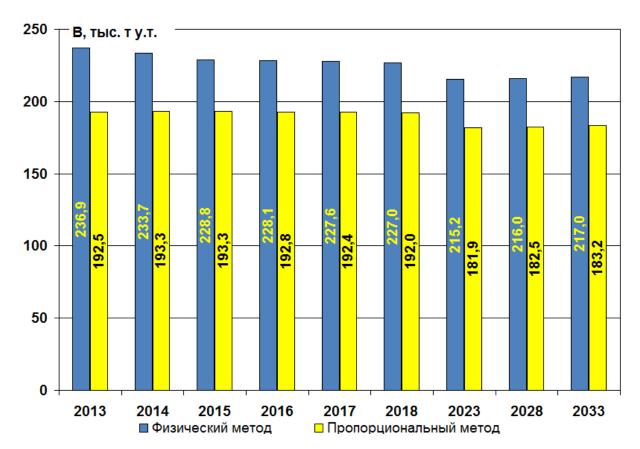


Рис. 6.1.12. Перспективный суммарный расход условного топлива на отпуск тепловой энергии по Кировской ТЭЦ-3 (ТЭЦ в целом)

К 2033 году годовой расход топлива Кировской ТЭЦ-3 увеличится на 240,9 тыс. т у.т. относительно фактического потребления топлива в 2013 году.

Коэффициент использования топлива также несколько увеличивается с 60,1 % в 2013 году до 61,6 % в 2033 году, главным образом, из-за уменьшения выработки электроэнергии по конденсационному циклу существующим оборудованием ТЭЦ и вводов ПГУ.

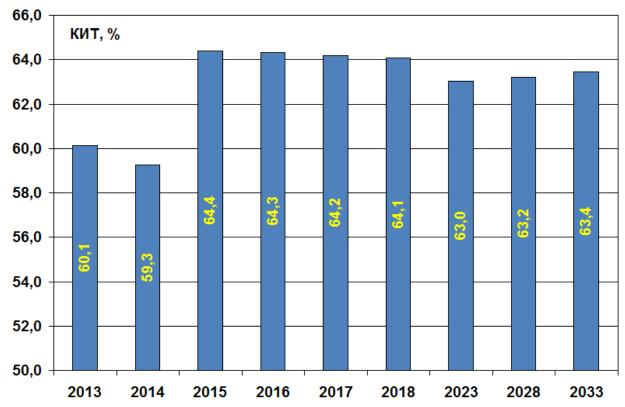


Рис. 6.1.13. Прогноз на 2014 - 2033 годы изменения коэффициента использования топлива Кировской ТЭЦ-3 (существующее оборудование)

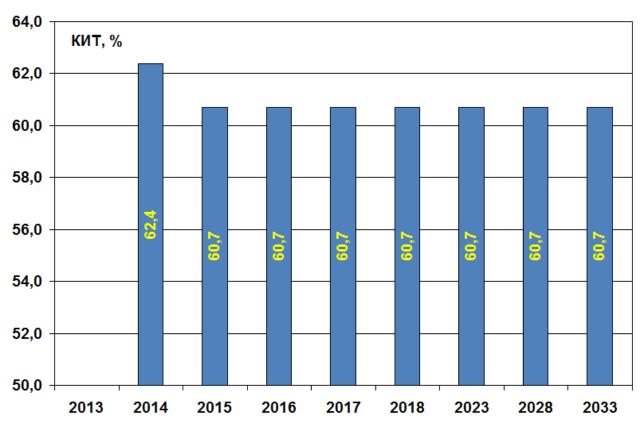


Рис. 6.1.14. Прогноз на 2014 - 2033 годы изменения коэффициента использования топлива Кировской ТЭЦ-3 (вновь вводимая ПГУ-220Т)

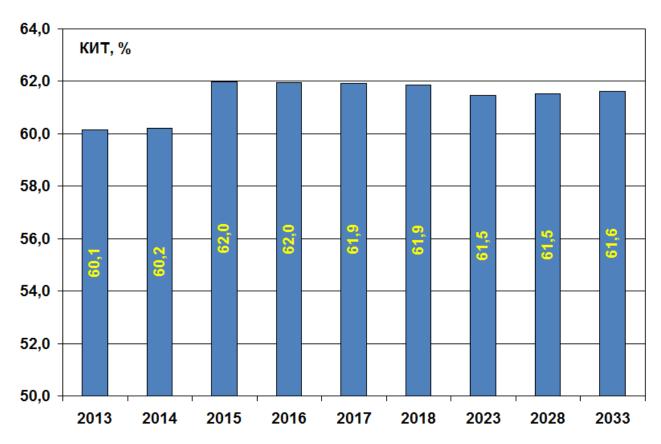


Рис. 6.1.15. Прогноз на 2014 - 2033 годы изменения коэффициента использования топлива Кировской ТЭЦ-3 (ТЭЦ в целом)

6.2. Определение потребности в топливе для котельной микрорайона Каринторф

Динамика изменения расхода условного топлива котельной микрорайона Каринторф в ретроспективном периоде приведена в табл. 6.2.1.

Таблица 8.2.1

Nº	Показатель	Размер-	Отчётный год							
п/п	Показатель	ность	2010 г.	2011 г.	2012 г.	2013 г.	2014 г.			
1	Произведено тепловой энергии	Гкал	14 703	13 844	13 173	15 118	14 065			
2	Всего отпущено тепловой энергии потребителям	тыс. Гкал	13 295	12 856	11 881	13 636	11 814			
3	Затрачено условного топлива	т у. т.	2 312	2 387	1 939	1 935	2 515			
4	Расход природного газа	M ³	1 941,6	1 954,7	1 891,8	2 022	1 884,8			
5	Средневзвешенный удельный расход условного топлива на выработку тепловой энергии	кг.у.т / Гкал	155,1	155,4	155,2	155,5	155,6			

Динамика изменения расхода условного топлива котельной микрорайона Каринторф в прогнозируемом периоде от состояния на 2013 год приведена на в табл. 6.1 и на рис. 6.1, динамика изменения полного расхода топлива – на рис. 6.2 – 6.4.

Видно, что изменения годового расхода топлива Кировской ТЭЦ-3 в период до 2014 г. в целом соответствуют динамике изменения отпуска тепла внешним потребителям от ТЭЦ. После 2015 года с вводом ПГУ расход топлива существенно увеличивается из-за увеличения отпуска электроэнергии. При этом, как показано выше, удельные расходы топлива на отпуск тепловой и электрической энергии уменьшаются.

№ п/п	Наименование показателя	Ед. изм.	Рассматриваемый период, год							
			2014 г.	2015 г.	2016 г.	2017 г.	2018 г.	2019 – 2023 гг.	2024 - 2028 гг.	2029 - 2033 гг.
1	Установленная тепловая мощность ТЭЦ-3	Гкал/ч	7	7	7	7	7	7	7	7
2	Располагаемая тепловая мощ- ность источника	Гкал/ч	5,5	5,5	5,5	5,5	5,5	5,5	5,5	5,5
3	Расход тепла на собственные нужды источника	Гкал/ч	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18

4	Располагаемая тепловая мощность источника нетто	Гкал/ч	5,32	5,32	5,32	5,32	5,32	5,32	5,32	5,32
5	Тепловая нагруз- ка потребителей	Гкал/ч	4	4	4,1	4,2	4,3	4,6	4,6	4,6
6	Резерв / дефи- цит тепловой энергии	Гкал/ч	1,32	1,32	1,22	1,12	1,02	0,72	0,72	0,72

6.3. Рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово-Чепецк для Кировской ТЭЦ-3

В качестве основного топлива на Кировсой ТЭЦ-3, используется каменный уголь, торф и природный газ, резервным топливом является топочный мазут марки М-100.

Поставщиками природного газа является ООО «Кировская региональная компания по реализации (Кировский с газопровода Ямбург-Тула), газа» отвод услуги газа ОАО «Кирооблгаз». по транспортировке Поставка мазута И каменного угля осуществляется железнодорожным транспортом.

Калорийность угля в среднем за период 2011-2013 гг. составила 4 464 ккал/кг.

Калорийность торфа в среднем за период 2011-2013 гг. составила 2 100 ккал/кг.

Калорийность природного газа – 8 138 ккал/м³.

Калорийность мазута - 9 433 ккал/кг.

Количество сожжённого основного и резервного топлив на источнике тепловой мощности – Кировской ТЭЦ-3 за 2011-2013 гг. представлены в табл. 6.3.1.

Соотношение видов топлива в топливном балансе станции представлено на рис. 6.3.1.

Таблица 6.3.1

Наименование показателя	Единица измерения	2011 г.	2012 г.	2013 г.
Затрачено условного топлива, в т.ч.:	тыс. тут	442,801	414,832	426,592
природный газ	тыс. тут	326,262	358,668	384,38
мазут	тыс. тут	0,743	0,365	0,324
уголь	тыс. тут	92,236	28,932	32,651
торф	тыс. тут	23,56	26,867	9,237
Затрачено натурального топлива, в т.ч.:	-	-	-	-
природный газ	млн. м ³	283,429	310,885	332,099
мазут	тыс. тонн	0,758	0,386	0,360
уголь	тыс. тонн	136,515	44,392	50,895
торф	тыс. тонн	76,540	85,09	24,490
Затрачено условного топлива в % от всего топлива				
природный газ	%	73,7	86,5	90,1
мазут	%	0,2	0,1	0,1
уголь	%	20,8	7,0	7,7
торф	%	5,3	6,5	2,2

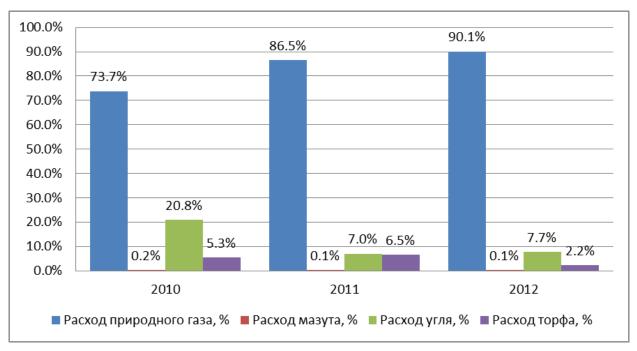


Рис. 6.3.1. Соотношение видов топлива в топливном балансе станции

В период с 2011 по 2013 гг. доля природного газа выросла с 73,7 % до 90,1 % при заметном снижении доли угля (с 20,8 до 7,7 %) и торфа (с 5,3 до 2,2 %). Мазут на ТЭЦ-3 практически не используется и его доля в топливном балансе колеблется в пределах 0,1-0,2 %.

Анализ графика рис. 6.3.1 показывает, что в топливоиспользовании ТЭЦ-3 имеется устойчивая тенденция увеличения доли использования природного газа.

Очевидно, что эта тенденция сохранится и в последующие годы.

Исходя из выше изложенного в Схеме теплоснабжения г. Кирово-Чепецк для Кировской ТЭЦ-3 рекомендуется сохранить тенденцию на замещение природным газом прочих видов топлива.

6.4. Рекомендации по видам используемого топлива в Схеме теплоснабжения г. Кирово-Чепецк для котельной микрорайона Каринторф

Котельная микрорайона Каринторф в период 2010 – 2014 гг. использовала только природный газ. Котельная запроектирована на сжигание природного газа.

Для котельной микрорайона Каринторф рекомендуется продолжить использование природного газа в качестве основного топлива.

Заключение

В Книге 6. «Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии» приведены сведения, содержащие:

- 1. Обоснование предлагаемых для реконструкции действующих источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии для обеспечения перспективных приростов тепловых нагрузок;
- 2. Предложения по строительству, реконструкции и техническому перевооружению котельных;
- 3. Предложения по покрытию перспективной тепловой нагрузки, не обеспеченной тепловой мощностью;
- 4. Определение условий организации централизованного теплоснабжения, индивидуального теплоснабжения, а также поквартирного отопления;
- 5. Результаты расчета максимальной выработки электрической энергии на базе прироста теплового потребления;
- 6. Определение потребности в топливе и рекомендации по видам используемого топлива:
- 7. Обоснование предлагаемых для реконструкции котельных для выработки электроэнергии в комбинированном цикле на базе существующих и перспективных тепловых нагрузок;
- 8. Обоснование предлагаемых для реконструкции котельных с увеличением зоны их действия путем включения в нее зон действия существующих источников тепловой энергии.
- 9. Обоснование предлагаемых для перевода в пиковый режим работы котельных по отношению к источникам тепловой энергии с комбинированной выработкой тепловой и электрической энергии;
- 10. Обоснование предложений по расширению зон действия действующих источников тепловой энергии с комбинированной выработкой тепловой и электрической энергии;
- 11. Обоснование предлагаемых для вывода в резерв и (или) вывода из эксплуатации котельных при передаче тепловых нагрузок на другие источники тепловой энергии;
- 12. Обоснование организации индивидуального теплоснабжения в зонах застройки поселения малоэтажными жилыми зданиями;
- 13. Обоснование организации теплоснабжения в производственных зонах на территории поселения, городского округа.
- 14. Обоснование перспективных балансов тепловой мощности источников тепловой энергии и теплоносителя и присоединенной тепловой нагрузки в каждой из систем теплоснабжения поселения, городского округа и ежегодное распределение объемов тепловой нагрузки между источниками тепловой энергии.
- 15. Расчет радиусов эффективного теплоснабжения (зоны действия источников тепловой энергии) в каждой из систем теплоснабжения, позволяющий определить условия, при которых подключение теплопотребляющих установок к системе теплоснабжения нецелесообразно вследствие увеличения совокупных расходов в указанной системе.

Список использованных источников

- 1. Федеральный закон от 27.07.2010 г. № 190-ФЗ «О теплоснабжении».
- 2. Федеральный Закон Российской Федерации от 23.11.2009 года № 261-ФЗ «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации».
- 3. Постановление Правительства Российской Федерации от 22.02.2013г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».
- 4. Методические рекомендации по разработке схем теплоснабжения. Утв. Приказом № 565/667 Минэнерго и Минрегион России 29.12.2013 г.
- 5. Приказ Министерства регионального развития РФ от 23 августа 2010 г. N 378 «Об утверждении методических указаний по расчету предельных индексов изменения размера платы граждан за коммунальные услуги».
- 6. Постановление Правительства РФ от 13.02.2006 г. № 83 «Правила определения и предоставления технических условий подключения объекта капитального строительства к сетям инженерно-технического обеспечения».
- 7. Приказ Минэнерго России от 30.12.2008 N 323 (ред. от 10.08.2013) «Об утверждении порядка определения нормативов удельного расхода топлива при производстве электрической и тепловой энергии». Зарегистрировано в Минюсте России 16.03.2009 № 13512.
- 8. Постановление Правительства РФ от 16.04.2013 № 307 «О ценообразовании в теплоэнергетике».
- 9. Методические указания по составлению отчета электростанций и акционерного общества энергетики и электрификации о тепловой экономичности оборудования: РД 34.08.552-93. М.: СПО ОРГРЭС, 1993.
- 10. Методические указания по составлению отчета электростанций и акционерного общества энергетики и электрификации о тепловой экономичности оборудования: РД 34.08.552-95. М.: СПО ОРГРЭС, 1995 (с Изм. № 1 к РД 34.08.552-95. М.: СПО ОРГРЭС, 1998).
- 11. Методические указания по составлению и содержанию энергетических характеристик оборудования тепловых электростанций: РД 34.09.155-93. М.: СПО ОРГРЭС, 1993 (с Изм. № 1 к РД 34.09.155-93. М.: СПО ОРГРЭС, 1999).